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1. The motion of a non-frictional pendulum is governed by the Ordinary Differential Equation (ODE)
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where f is the angular displacement, L = 1m is the pendulum length and the gravity acceleration is g =
9.8m/s?.
The position and velocity at time £ = 1s are known:

df
6(1) = 0.4 rad E(l) =0rad/s

a) Solve the initial boundary value problem in the interval (0, 1) using a second-order Runge-Kutta method
to determine the initial position at £ = 0s, with 2 and 4 time steps.

To use the Runge-Kutta method, the first thing to do is write the ODE as a linear system of equations.
We define @ = 6, and d6, /dt = 0, where we get the vector 8"
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The second-order Runge-Kutta method is defined as
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For 2 steps we have that h = —0.5 s, while for 4 steps, h = —0.25 s. The initial condition is
fy = 0.4 rad.

For 2 steps, i = 0 (6" = 0.4, 0 =0);

} 4-0.25(2- 0.
9(1):9(0)+§1[k1+k2]:(04 0.25(2-0+0.5-98 04)):( 009)

0+0.25-9.8(2-0.4—-0.5-0) 1.96

For i =1 (6{" = ~0.09, 6§ = 1.96):

h ~0.09 — 0.25 (2 - 1.96 — 0.5 - 9.8 - 0.09) ~0.95975
@ _gm) 4 1 o] = _
07 =07+ Gt = ( 1.96 - 0.25-9.8(2-0.09+0.5-1.96) )~ \  —0.882

Doing the same now for 4 steps. Starting with i =0 (BEU} =04, ng = ()):

}. _ E . 5. . 4
o) — 9O 4 %[kl k= ( 0.4—0.125(2-0+0.25-9.8-0.4) ) _ ( 0.2775 )

0+0.125-9.8(2-0.4 — 0.25-0) 0.98
For i = 1 (95” — 0.2775, 08V = (}.98):

02 — gV 4 g[kl o] = ( 0.2775 — 0.125 (2 - 0.98 + 0.25 - 9.8 - 0.2775) ) _ ( —0.052484 )

0.98 +0.125 - 9.8 (2 0.2775 — 0.25 - 0.98) 1.35975
For i = 2 (95” = —0.052484, o) = 1.35975):

03 — @ +g et = ( —0.052484 — 0.125 (2 - 1.35975 — 0.25 - 9.8 - 0.052484) ) _ ( —0.376348 )

1.35975 — 0.125 - 9.8 (2 - 0.052484 + 0.25 - 1.35975) 0.814741



For i =3 (0" = —0.376348, 6§ = 0.814741):

0 _ g +g ] = ( ~0.376348 — 0.125 (2 - 0.814741 — 0.25 - 9.8 - 0.376348) ) N ( ~0.464777

0.814741 — 0.125- 9.8 (2 - 0.376348 + 0.25 - 0.814741) —0.356826
For 2 steps, the final position at £+ = 0 is # = —0.95975, while for 4 steps the final position is
f# = —0.464777. From the analytical solution, #(¢f) = 0.4cos(y/g/L(t — 1)), we get that the exact
solution is 6 = —0.4.

b) Using the approximations obtained in a), compute an approximation of the relative error in the solution
computed with 2 steps.
The relative error is computed as
065
%

with 0 = —0.4 rad and 6&2) = —0.95975 rad. Replacing values

= 1.399375 = 139.9375%

| —0.4 +0.95975
N —0.4

For reference, using 9%4) = —0.464777 rad:

. _ | 0440464777
- —0.4

‘ = 0.1619425 = 16.19425%

which is an almost 9 times reduction of the error.

¢) Propose a time step h to obtain an approximation with a relative error three orders of magnitude smaller.
We already have a result with a relative error in the 10~! order of magnitude with h = 0.25, and we
are targeting an error of the order 107, Since doubling the size of steps has reduced the order of
magnitude of the error by one, it’s only logical to propose doubling 3 times the number of steps to
obtain an error in the desired order. Since we have 22 steps, n = 2° is tried with a MATLAB script,
which gives

08*%) = —0.400139080486129

for which the relative error is

€= 04+ 0'4003'19080486129 = 3.477012153234316 - 10~* = 0.034770121532343%

which is the error with the desired order of magnitude.

)



2. Consider the initial value problem

dy _ . 2 .
ol A +1 xe€(0,1)
y(0) =1

a) Solve the initial value problem using the Euler method with step h = 0.25.

The Euler method is defined in every step as
Yij1 =Y+ hf(ziu)
We have 4 steps:

Y1) = Yo + hf(@0) yo) =1+0.25-(1-0*+1) =15

Y2y = Y1y + hf(zay, ya)) = 1.5+ 0.25 - (1.5 — 0.257 + 1) = 2.109375

Y3) = Y2) + hf (), Y(2)) = 2.109375 + 0.25 - (2.109375 — 0.5% + 1) = 2.824219
Y1) = Y) + hf (23, y)) = 2.824219 + 0.25 - (2.824219 — 0.75% + 1) = 3.639649

b) Compute the solution using the Heun method with a step h such that the computational cost is equivalent
to the computational cost in a).

Euler method takes one computation per step, while Heun method takes two computations per step
(the computation on k’s and the next step). So, we use Heun method with a step double the size
than Euler, h = 0.5. Heun method is written as

1
Yit1 = ¥i + §[k1 + ko)

kl = f("rt- y‘x)
ko = fla; + h,y; + hky)

for i = 0:
bp=1-024+1=2
ka=(1+0.5-2) —0.5% +1=3.75
y1 =1+40.5-[2+ 3.75] = 3.875
for i = 1:

ky = 3.875 — 0.5 + 1 = 4.625
ko = (3.875 4 0.5 - 4.625) — 12 + 1 = 6.1875
Yo = 3.875 + 0.5 - [4.625 + 6.1875] = 9.28125



3. The ordinary differential equation
dy
— = f(x,1
o = @)
is defined over the domain (0, 1), and is to be solved numerically subject to the initial condition y(0) = 1,
where y(x) is the exact solution. The forward Euler method for integrating the above differential equation
is written as
Yiq1 =Yi+hf(z:,Y5)
where Y; denotes the discrete solution at node i, with position z;, of a uniform grid of nodes of constant grid
interval size h and ;41 = x; + h.
a) Using a Taylor series expansion, deduce the leading truncation error of the scheme. Is the method
consistent? Explain your answer.
Let y(z;) be the solution of the ODE at the point x;, and y(x;+1) = y(x; + h) the solution at the
next point. The Taylor series around x = a is defined as

(@) = ¥(@) + o/ (@)(& — a) + @)z — a)? + 3y (@) = a)® + -
So taking the variable x = z; + h = z;4; and a = x;, we obtain
y(xi +h) = y(x;) + ' (x3) (@ + h —x;) + O((z; + h — z:)?)
Y(wis1) = y(a) + hy'(z:) + O(h?)
Since y'(x) = f(x,y), we finally obtain the expression

y(@iv1) = y(xi) + hf (@i, y(:))
Yiv1 = Yi + hf(@i, w)

b) State the backward Euler method for integrating the above differential equation where f(x,y) is a general
non-linear function of z and y.

For the Backward Euler method we apply the same procedure as before, with the difference that
x = xi41 — h =x; and a = ;1. Doing the Taylor expansion we obtain
y(@iv1 —h) = y(@ip1) + ¥ (@ie1) (@igr — h — 2i31) + O((wig1 — h — 2i11)?)
y(@i) = y(@ip1) — by (zis1) + O(R?)
y(xi) = y(wiv1) — hf(wigr, y(zis1))
Yi = Yi1 — Wf(@iv1,Yit1)
Yir1 = Yi + hf(Tiv1, Yigr)

Which is implicit since y;11 is dependant on itself.

¢) Deduce the stability limits of the respective forward Euler method and backward Euler method for the
model equation dy/dx = —\y where X is a positive real constant.
The analytical solution for the problem is

y(z) = yoe

Stability demands that the solution tends to zero at large x. This implies, given the condition for A,
that the analytical problem converges. Using the Forward Euler method:

Yit1 = yi + hf(zi vi)

Yis1 = Yi — hAy;

Yirr1 = (1 = hA)yi

e



By induction, we get that
Yi = yo(1 — hA)*
and this should also tend to zero, which is true when |1 —hJ| is less than one. Written as an inequality
[T —hAl <1
—-l<l—-hA<1
0<hh<2

So, for the condition set for A, we need that hX has a value in the interval |0, 2[. Now for the Backward
Euler method:

Yir1 = Yi +hf(xiv1,yie1)
Yier = Yi — hAYi1
yi = (1 +h\)yin

By induction, we get that

1 k
y":y“(uh/\)

and we get a similar convergence condition:

1
— <1
ey
[1+hA>1
this gives two cases:
1+hA>1
1+hA< -1
s0 finally the condition is
hA >0
hA < =2

which is a bigger range than the one covered by the Forward Euler Method.

d) Use the backward Euler method to compute the numerical solution of the ordinary differential equation

dy 3.5
— = —2by""
dx o

with initial condition y(0) = 1, by hand for two steps with grid interval size h = 1/10 (Use 2 Newton
iterations per step for this calculation).
For Backward Euler:

Yirr = ¥i + hf(@ig1,¥i41)
Yit1 = yi — h(25y7)

For h = 1/10 we have

3.5
Yit1 = Yi — 2.5455

Fyisr1) = i — yis1 — 2.5957
F(yis1) = =1 - 8.75y77



And for 2 steps, i = 0:

.- Flym) =1 = ya) — 25955
— _ = 3.0 ) > E'l)
ya) =1-25y5 — { flyay) = =1 - 8.75y%3

y?l) = 0.6 (Obtained by inspection)

1—0.6—25-0.6%
( = - = oo =
Yy = 06 — =g grs = 0994685
1 — 0.594685 — 2.5 - 0.594685%

—1—8.75 - 0.5946852-5

Yty = 0.594685 — =0.594643 —  f(y()) = —8.937383-1077

Y1y = 0.594643
Fori=1:

flyz)) = 0.594643 — y2y — 2'53;?13;

Yoy = 0.594643 — 2.5y>° —
Y(z) Y { Fye) =—-1- 8.75y(22;‘;’

y&) = 0.45 (Obtained by inspection)

0.594643 — 0.45 — 2.5 - 0,453
1
— 045 — - — 0.446263
Y2) 7 —1-875-0.4525
0.594643 — 0.446263 — 2.5 - 0.44626335

—1—8.75-0.446263%>

Yl = 0.446263 —

= 0446242 —  f(yly) = 9.121735- 1077
Y(2) = 0.446242

From the analytical solution shown in part f, we obtain that y(0.1) = 0.452757 and y(0.1) = 0.353075.

e) Use the forward Euler method to compute the numerical solution of the above ordinary differential
equation with same initial condition by hand for two steps with grid interval size h = 1/10.

‘We have 2 steps:

Yiv1 = ¥i + hf (i, yi)

Yit1 = yi — h(25y7°)

Yy = Yoy — h(25y)) =1-0.1-(25-1%%) = —15

Y2) = Yy — h(25y}5) = —1.5— 0.1+ (25 (—1.5)*7) = —1.5 + 10.333785i

As can be seen, the step is to big to proceed, giving complex numbers as a result.

f) The analytical solution is
1252 + 2\ 2/°
ya) = (—5—

Using Matlab codes, indicate the maximum stable interval size possible for forward Euler method from
the following; h = 1/10, h = 1/15, h = 1/30, h = 1/45, h = 1/90. How does your choice compare with
the stability condition?

Using MATLAB, the solutions obtained with the proposed h values are
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Figure 1: integration for different step sizes

As can be seen, the first to step sizes are unstable, giving complex numbers as results. From steps
1/30 and less the results converge and improve with more points used for the integration. From the
stability conditions derived from before, we have A = 25, so we should expect stability for h < 1/12.5.
In this case, stability is not corresponding with this condition, probably considering the fact that

f(x,y) is not a linear function as defined in part c. In this particular case, stability is achieved from
h =1/25 and smaller.



