Numerical Methods for Partial Differential Equations

Ordinary Differential Equations

1. The motion of a non-frictional pendulum is governed by the Ordinary Differential Equation (ODE)

$$
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \theta=0
$$

where θ is the angular displacement, $L=1 \mathrm{~m}$ is the pendulum length and the gravity acceleration is $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
The position and velocity at time $t=1 \mathrm{~s}$ are known:

$$
\theta(1)=0.4 \mathrm{rad} \quad ; \quad \frac{\mathrm{d} \theta}{\mathrm{dt}}(1)=0 \mathrm{rad} / \mathrm{s}
$$

a) Solve the initial boundary value problem in the interval $(0,1)$ using a second-order Runge-Kutta method to determine the initial position at $t=0 \mathrm{~s}$, with 2 and 4 time steps.
b) Using the approximations obtained in a), compute an approximation of the relative error in the solution computed with 2 steps.
c) Propose a time step h to obtain an approximation with a relative error three orders of magnitude smaller.
2. Consider the initial value problem

$$
\begin{aligned}
& \frac{d y}{d x}=y-x^{2}+1 \quad x \in(0,1) \\
& y(0)=1
\end{aligned}
$$

a) Solve the initial value problem using the Euler method with step $h=0.25$.
b) Compute the solution using the Heun method with a step h such that the computational cost is equivalent to the computational cost in a).

Note that the analytical solution of the initial value problem is a second degree polynomial.
c) Compute the pure interpolation polynomial that fits the results in b).
d) Which approximation criterion do you recommend to fit the results obtained in a)? Compute the polynomial approximation with the proposed criterion and compare the results with the polynomial obtained in c).
3. The ordinary differential equation

$$
\frac{d y}{d x}=f(x, y)
$$

is defined over the domain $(0,1)$, and is to be solved numerically subject to the initial condition $y(0)=1$, where $y(x)$ is the exact solution. The forward Euler method for integrating the above differential equation is written as

$$
Y_{i+1}=Y_{i}+h f\left(x_{i}, Y_{i}\right)
$$

where Y_{i} denotes the discrete solution at node i, with position x_{i}, of a uniform grid of nodes of constant grid interval size h and $x_{i+1}=x_{i}+h$.
a) Using a Taylor series expansion, deduce the leading truncation error of the scheme. Is the method consistent? Explain your answer.
b) State the backward Euler method for integrating the above differential equation where $f(x, y)$ is a general non-linear function of x and y.
c) Deduce the stability limits of the respective forward Euler method and backward Euler method for the model equation $d y / d x=-\lambda y$ where λ is a positive real constant.
d) Use the backward Euler method to compute the numerical solution of the ordinary differential equation

$$
\frac{d y}{d x}=-25 y^{3.5}
$$

with initial condition $y(0)=1$, by hand for two steps with grid interval size $h=1 / 10$. (Use 2 Newton iterations per step for this calculation.)
e) Use the forward Euler method to compute the numerical solution of the above ordinary differential equation with same initial condition by hand for two steps with grid interval size $h=1 / 10$.
f) The analytical solution is

$$
y(x)=\left(\frac{125 x+2}{2}\right)^{-2 / 5}
$$

Using Matlab codes, indicate the maximum stable interval size possible for forward Euler method from the following; $\mathrm{h}=1 / 10, \mathrm{~h}=1 / 15, \mathrm{~h}=1 / 30, \mathrm{~h}=1 / 45, \mathrm{~h}=1 / 90$. How does your choice compare with the stability condition?
4. The second-order ordinary differential equation

$$
\frac{d^{2} y}{d x}+\omega^{2} y=0
$$

is defined over the domain $(0,1)$, and is to be solved numerically subject to the initial conditions $y(0)=0, d y / d x(0)=\omega$, where $y(x)$ is the exact solution.
a) Reduce the above second order ODE to a system of first order ODEs.
b) Set $\omega^{2}=3$. Using the forward Euler method to integrate the system, compute the solution at $t=1$ by hand with $n=4$ steps. Use the Forward Euler code to check your results.
c) Using the Matlab code, compute the solution using $n=8$ steps. Use these solution values to estimate the step size required to obtain a numerical solution with three significative digits. Try your new step size.
1.

$$
\begin{array}{ll}
y_{1}=\theta \\
y_{2}=\frac{d \theta}{d t} & \frac{d y_{1}}{d t}=\frac{d \theta}{d t}=y_{2} \\
\frac{d y_{2}}{d t}=\frac{d^{2} \theta}{d t^{2}}=-\frac{9}{6} \theta=-\frac{9}{2} y_{1}
\end{array} \quad \rightarrow \quad y=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
\theta \\
\frac{d \theta}{d t}
\end{array}\right] \quad f=\left[\begin{array}{c}
y_{2} \\
-\frac{9}{2} y_{1}
\end{array}\right]=\left[\begin{array}{c}
d \theta \\
\frac{d}{d} \\
-9.8 \theta
\end{array}\right]
$$

$$
\frac{2 \text { time steps }}{h=\frac{0-1}{2}=-1 / 2} \quad \text { to } \quad t_{1} \quad t_{2}
$$

Heun mernod (2nd orde. Runge-kurta me mod)

$$
Y_{i+1}^{*}=y_{i}+h f\left(x_{i}, y_{i}\right)
$$

$$
y_{i+1}=y_{i}+\frac{h}{2}\left(f\left(x_{i}, y_{i}\right)+f\left(x_{i}, y_{i+1}\right)\right.
$$

$$
\Rightarrow i=0
$$

$$
Y_{1}^{*}=Y_{0}-\frac{1}{2} f\left(t_{0} Y_{0}\right)=\left[\begin{array}{c}
0.4 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
0 \\
-9.8 \cdot 0.4
\end{array}\right]=\left[\begin{array}{l}
0.4 \\
49 / 25
\end{array}\right]
$$

$$
Y_{1}=y_{0}-\frac{1}{4}\left[f\left(t_{0}, Y_{0}\right)+f\left(t_{0}, y_{1}^{*}\right)\right]=\left[\begin{array}{c}
0.4 \\
0
\end{array}\right]-\frac{1}{4}\left(\left[\begin{array}{c}
0 \\
-9.825
\end{array}\right]+\left[\begin{array}{c}
49125 \\
-9.8 .0,4
\end{array}\right]\right)=\left[\begin{array}{c}
-0.09 \\
1.96
\end{array}\right]
$$

$\Rightarrow r=1$
$Y_{2}^{*}=Y_{1}-\frac{1}{2} f\left(t_{0}, Y_{1}\right)=\left[\begin{array}{c}-0.07 \\ 1.96\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}1.96 \\ -9.8 \cdot(-0.04)\end{array}\right]=\left[\begin{array}{c}-1.07 \\ 1.599\end{array}\right]$
$Y_{2}=Y_{1}-\frac{1}{4}\left[f\left(t_{1}, y_{2}\right)+f\left(t_{0}, Y_{2}^{*}\right)\right]=\left[\begin{array}{c}-0.09 \\ 1.96\end{array}\right]-\frac{1}{4}\left(\left[\begin{array}{c}1.96 \\ -9.8(-0.09)\end{array}\right]+\left[\begin{array}{l}1.519 \\ -9.8(-1.07)\end{array}\right]=\left[\begin{array}{l}-0.9597 \\ -0.882\end{array}\right]\right.$
$\theta(0)=-0.9597 \mathrm{rad}$
$\frac{4 \text { time steps }}{t_{0} \quad t_{9} \quad t_{2} \quad t_{7} \quad t_{4}} \quad t=1 \quad t=0.4 r \quad t=0 \quad t_{i=215} \quad t_{0} \quad h=\frac{0-1}{4}=-1 / 4$

$$
\begin{aligned}
& Y_{1}^{*}=\left[\begin{array}{c}
0.4 \\
0
\end{array}\right]-\frac{1}{4}\left[\begin{array}{c}
0 \\
-98125
\end{array}\right]=\left[\begin{array}{c}
0.4 \\
0.98
\end{array}\right] \\
& Y_{1}=\left[\begin{array}{c}
0.4 \\
0
\end{array}\right]-\frac{1}{8}\left(\left[\begin{array}{c}
0 \\
-98 / 25
\end{array}\right]+\left[\begin{array}{c}
0.98 \\
-9.8 .0 .4
\end{array}\right]\right]=\left[\begin{array}{c}
0.277 \\
0.98
\end{array}\right]
\end{aligned}
$$

$$
\Rightarrow \quad i=1
$$

$$
y_{2}^{*}=\left[\begin{array}{l}
0.297 \\
0.04
\end{array}\right]-\frac{1}{4}\left[\begin{array}{c}
0.98 \\
-9.8 .0 .177
\end{array}\right]=\left[\begin{array}{l}
0.032 \\
1.658
\end{array}\right]
$$

$$
y_{2}=\left[\begin{array}{c}
0.277 \\
0.98
\end{array}\right]-\frac{1}{8}\left(\left[\begin{array}{c}
0.99 \\
-9.8 .0 .277
\end{array}\right]+\left[\begin{array}{c}
1.658 \\
-8.8 .0 .032
\end{array}\right]\right)=\left[\begin{array}{l}
-0.052 \\
1.358
\end{array}\right]
$$

$$
\begin{aligned}
& \Rightarrow i=2 \\
& Y_{3}^{*}=\left[\begin{array}{c}
-0.052 \\
1.358
\end{array}\right]-\frac{1}{4}\left[\begin{array}{c}
1.358 \\
-98 \cdot(00.056
\end{array}\right]=\left[\begin{array}{c}
-0.3915 \\
1.2306
\end{array}\right] \\
& Y_{3}=\left[\begin{array}{c}
-0.082 \\
1.358
\end{array}\right]-\frac{1}{8}\left(\left[\begin{array}{l}
1.358 \\
-9.8 .1 .0052
\end{array}\right] *\left[\begin{array}{c}
1.2306 \\
-9.89 .0 .345)
\end{array}\right]\right)=\left[\begin{array}{c}
-0.3755 \\
0.814
\end{array}\right] \\
& \Rightarrow C=3 \\
& Y_{4}^{*}=\left[\begin{array}{c}
-0.3755 \\
0.814
\end{array}\right]-\frac{1}{4}\left[\begin{array}{c}
0.814 \\
-9.8 \cdot 1-0.3758
\end{array}\right]=\left[\begin{array}{c}
-0.579 \\
-0.106
\end{array}\right] \\
& Y_{4}=\left[\begin{array}{c}
-0.3757 \\
0.814
\end{array}\right]-\frac{1}{8}\left(\left[\begin{array}{c}
0.814 \\
-9.8 \cdot(00.375 \%
\end{array}\right]+\left[\begin{array}{l}
-0.106 \\
-98108798
\end{array}\right]\right)=\left[\begin{array}{l}
-0.464 \\
-0.355
\end{array}\right] \\
& \theta(0)=-0.464 \mathrm{rad}
\end{aligned}
$$

13)

In order to compute the relate crown, We first have computed the solution with 1000 time steps wink matlab. wave eve gores po use this one no compute the ernove we brain wing the 2 trmestees approach
c)

$$
\begin{aligned}
& h^{*}=\left(\frac{t o 1}{E_{h}}\right)^{1 / 8+9} h \quad p+1-t \text { order of the method cain our cask } \\
& \left.h^{*}=\left(\frac{10^{-3} E h}{g}\right)^{1 / 2} \cdot(-1 / 2)=-0.016 \Rightarrow h^{*}=-0.046 \right\rvert\,
\end{aligned}
$$

$$
\frac{d y}{d x}=y-x^{2}+1 \quad x \in(0,1) \quad y(0)=1
$$

a) $h=0.25$
eviler Method:

$$
\begin{array}{lllll}
y_{0} & y_{1} & y_{2} & y_{3} & x_{4} \\
1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0.5 & 0 \\
x_{0} & 1 \\
x_{0} & x_{1} & x_{2} & x_{3} & x_{4}
\end{array}
$$

$Y_{i+1}=Y_{i}+h f\left(x_{i}, y_{i}\right)$
$y_{1}=y_{0}+0.25 f\left(x_{0}, y_{0}\right)=1+0.25(1-0+1)=1.5$
$y_{2}=y_{1}+0.25\left(1.5-0.25^{2}+1\right)=2.109$
$y_{3}=2.109+0.25\left(2.109-0.5^{2}+1\right)=2.823$
$y_{4}=2823+0.85\left(2.823-0.75^{2}+1\right)=3638$
B)
$\Rightarrow i=0$:

$$
\begin{aligned}
& y_{1}^{*}=y_{0}+\frac{1}{2} f\left(x_{0}, y_{0}\right)=1+\frac{1}{2}(1-0+A)=2 \\
& y_{1}=y_{0}+\frac{1}{4}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{0}, y_{1}^{*}\right)\right]=1+\frac{1}{4}[2+3)=2.25
\end{aligned}
$$

$$
\Rightarrow C=1
$$

$$
\begin{aligned}
& y_{2}^{*}=y_{1}+\frac{1}{2} f\left(x_{1}, y_{1}\right)=2.25+\frac{1}{2}\left(2.25=0.5^{2}+1\right)=3.75 \\
& y_{2}=y_{1}+\frac{1}{4}\left[f\left(x_{1}, y_{1}\right)+f\left(x_{1}, y_{2}^{4} 1\right]=2.25+\frac{1}{4}\left(2.25-0.5^{2}+1+3.75-0.5^{2}+1\right)=4.125\right.
\end{aligned}
$$

C)

$$
\begin{aligned}
& \text { The computational cost is seven by the number of themes the function is evaluated. En me euler memos, the friction is evaluated } \\
& \text { once in each sites. thousese, in the Hew method, the function is eralvated mice. } \\
& \text { Phis way, since we have done } 4 \text { steps with me wEller Method, we need no carry out the Heron pernod with } 2 \\
& \text { pres inorder } 10 \text { maintain me computational cost } \\
& \text { Hern Metinod: } \\
& Y_{i+1}^{*}=Y_{i}+h f\left(x_{i}, y_{i}\right) \\
& y_{i+1}=y_{i}+\frac{h}{2}\left[f\left(x_{i}, y_{i}\right)+f\left(x_{i}, y_{i+2}^{*}\right)\right] \\
& h=\frac{1-0}{2}=1 / 2 \\
& \begin{array}{lll}
t_{0} & t_{1} & t_{2} \\
0 & 1 / 2 & 1 \\
x_{0} & x_{1} & x_{2}
\end{array}
\end{aligned}
$$

$\frac{d y}{d x}=f(x, y) \quad$ in $(0,1) \quad y(x)=$ coact solution
$y(10)=1$

Forward Ever Method
$y_{i+8}=y_{i}+h f\left(x_{i}, y_{i}\right)$

Taylor sines

$$
f(a)+\frac{f^{\prime}(a)}{A!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{6^{\prime \prime \prime}(a)}{9!}(x-a)^{3}+\cdots=\sum_{n=0}^{\infty} \frac{f^{n}(a)}{n!}(x-a)^{n}
$$

a) Taylor expansion of y a round x_{i} :

 at mat ste f.

Lex's compere the numerical solution at $x_{2}\left(x_{0}+h\right.$):
$y^{x}\left(x_{1}\right)=y_{0}+\operatorname{hf}\left(x_{0}, y_{0}\right)$

And the exact solution: (Taylor)
$y\left(x_{0}+h\right)=y_{0}+h \frac{d y}{d x}\left(x_{0}\right)+o\left(h^{2}\right)=y_{0}+h f\left(x_{0} y_{0}\right)+O\left(h^{2}\right)$
substrachiog men:
$y\left(x_{0}+h\right)-y^{*}\left(x_{1}\right)=y_{0}+h f\left(x_{0} y_{0}\right)+0\left(h^{2}\right)-\left(y_{0}+h_{0}+\left(x_{0} / y_{0}\right)\right)$
NLTE $=O\left(h^{2}\right)$

A memod is said to be of order \& if me residual is:
b) In the backward Ever harthod a backward apprshimathan of the denirative is sonstaksed.
using taylor series:

$$
\begin{aligned}
& y_{i}: y_{i+1}=h \frac{d y}{d x}\left(x_{i+2}\right)+o\left(n^{2}\right) \\
& \frac{d y}{d x}\left(x_{i+1}\right)=\frac{y_{i+1}-y_{i}}{h}+z_{i}(h) \quad \text { with fron(ahion error zi(h): och) }
\end{aligned}
$$

$$
\downarrow
$$

$$
y_{i+1}=y_{i}+h f\left(x_{i+1}, y_{i+1}\right)+h z_{i}(h)
$$

Neglecting the fromiation error:

$$
y_{i+1}=y_{i}+h f\left(x_{i+1}, y_{i+1}\right) \quad \Rightarrow\left\{\begin{array}{l}
y_{0}=\alpha \\
y_{i+1}=y_{i}+h f\left(x_{i}+1, y_{i}+1\right) \quad i=0, \ldots, m-1
\end{array}\right.
$$

An equation cor a system of equations) mat motyht be nom-linear hers so be solved in order to compute Y_{i+1}. it is ax implicit method

$$
\begin{aligned}
& R_{i}(h)=O\left(h^{q+1}\right) \rightarrow \text { The Ever Method is of order } 1 \\
& \lim _{h \rightarrow 0} L T E=0 \mid \Rightarrow \text { The merhad is consistent che errors a to } h^{2} \text {. It } h \rightarrow 0 \text {, so don the taos, }
\end{aligned}
$$

e) $\quad \frac{d y}{d x}=-x y$

Forward Eller meinod
$f(x, y)=-\lambda y$
$y_{i+1}=y_{i}+h\left(-\lambda y_{i}\right)=y_{i}-h \lambda y_{i}$
$y_{i+1}=6 y_{i}$ with $G=1-\lambda h \quad G$ is me amplitication fenctor
The scheme is abrolutely staste if 16121 :

$$
|1-\lambda h|<1 \quad\left\{\begin{array}{l}
1-\lambda h<1 \Rightarrow-\lambda h<0 \rightarrow \lambda h>0 \\
-1+\lambda h<1 \Rightarrow \lambda h<2
\end{array}\right\} \begin{array}{|l|l|l|l|}
10<\lambda<2
\end{array}
$$

Backward Euler Method:
$f(x, y)=-x y$
$y_{i+1}=y_{i}+h\left(-x y_{i+1}\right)=y_{i+1}=y_{i}-h y_{i+1} \quad \rightarrow y_{i}=(1+x h) y_{i+1}$

$$
y_{i+1}=6 V_{i} \text { with } b: \frac{1}{1+\lambda h}
$$

Let's impose ma stability condition:

$$
|1+h \lambda|>1\left\{\begin{array}{l}
1+x h\rangle 1 \Rightarrow x>0 \\
-1-x h>1 \Rightarrow-x h>2 \Rightarrow x h<-2
\end{array}\right\}
$$

$\lambda h>0$ or $\lambda h<-2$
d)

$$
\frac{d y}{d x}=-25 y^{3.5} \quad y(0)=1 \quad \text { raro seeps } \quad h=1 / 90
$$

13acrinard Euler metrod:

$$
y_{i+1}=y_{i}+h f\left(x_{i+1}, y_{i+1}\right)
$$

$$
y_{1}=y_{0}+h f\left(x_{i+1}, y_{i+1}\right)=1+\frac{1}{10}\left(-25 y_{1}^{3.5}\right) \rightarrow y_{1}=1,-2.5 y_{1}^{3.5} \Rightarrow w\left(y_{1}\right)=+y_{1}+2.5 y_{4}^{3.5}-1 \cdot 0
$$

Vue now sbe 2 newrion iseratisons. Ler's recall me method:

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

$$
\begin{aligned}
& y_{1}+2.5 y_{1}^{35}-1=0 \\
& \quad{ }^{35} \text { denirating: } \\
& 1+3.5 .2 .5 y_{1}^{2.5}=0 \rightarrow 1+8.75 y_{1}^{25} \rightarrow \sim^{\prime}(y A)=+8.75 y_{1}^{2.5}+1
\end{aligned}
$$

In order co obrain an inimal appoximation, we are soins ro neglect y_{n} in front of y_{A}^{25} :

$$
y_{1}=\sqrt[35]{\frac{1}{2.5}}=0.7697
$$

This way:

$$
\begin{aligned}
& y_{1}^{(1)}=y_{1}^{(0)}-\frac{w_{1}\left(v_{1}^{(0)}\right)}{w_{1}\left(y_{1}^{(0)}\right)}=0.7697-\frac{(-0.7698)}{-5.5479}=0.6309 \\
& y_{1}^{(1)}=y_{1}^{(a)}-\frac{w_{1}\left(y_{1}^{(a)}\right)}{w_{A}\left(y_{1}^{1 a)}\right.}=0.6309-\frac{0.1295}{3.766}=0.5965
\end{aligned}
$$

We now so back to ive bacrward bler memod.
$\left.y_{2}=y_{1}+h f\left(x_{2}, y_{2}\right)=0.5925+\frac{1}{10} 5.25 y_{2}^{3.5}\right) \Rightarrow y_{2}=0.5925-2.5 y_{2}^{3.5} \quad \omega(y 2)=y_{2}+2.5 y_{2}^{3.5}-0.5925$ $w^{\prime}(y 2)=8.75 y_{2}^{3.5}+1$

Now we are goins to uxe me Newtom memod ajelin: (we osrain tare fiest approxive whim us before)
$y 2^{(0)}=\sqrt[3]{\frac{0.59 .65}{2.5}}=0.662$

$$
y_{2}^{(1)}=y_{2}^{(0)}-\frac{w_{2}\left(y_{2}^{(0)}\right)}{w_{2}^{\prime}\left(y_{2}^{(0)}\right)}=0.662-\frac{0.659}{3.065}=0.446
$$

$$
y_{2}^{(1)}=y_{2}^{(1)}-\frac{w 2\left(y_{2}^{(1)}\right)}{\alpha_{2}^{\prime}\left(y_{2}^{(1)}\right)}=0.446-\frac{0.0016}{1.512}=\frac{0.44 n}{-}
$$

e)

> Forward E-ler Memod:
> $Y_{i+1}=Y_{i}+h\left(s x_{i}, Y_{i}\right)$
$Y_{1}: y_{0}+\frac{1}{10}\left(-25.1^{34}\right): 1-2.5=-1.5$
$Y_{2}=Y_{2}+\frac{1}{10}\left(-28 .(-15)^{3.5}\right) \Rightarrow$ The result is at complex variasle. ©it's unstasles.

We can check mis checming re stasility limits:

f) using matlab we caw prove mat:
$\Rightarrow h=1 / 10 \rightarrow$ unstable
$\Rightarrow h=1 / 15 \rightarrow$ ansrable
$\Rightarrow h=1 / 30 \rightarrow$ sralle \rightarrow mis one \Rightarrow me maximum ond 1 hmax $=1 / 301$ which falls in oue srasility tonginun 0 h Lo.08
$\Rightarrow h=1145 \Rightarrow$ stasle
$\Rightarrow h=1,90 \rightarrow$ stasle

