Numerical Methods for Partial Differential Equations

Homework- Ordinary Differential Equations
Student- MALIK DAWI

Exercise-1

A. 1 To solve the following second-order ODE, first it must be reduced to a system of first order ODEs.

$$
\begin{gathered}
\frac{d^{2} \theta}{d t^{2}}+\frac{g}{L} \theta=0 \\
t \in[0.1] \quad L=1 \quad g=9.81 \quad \theta(1)=0.4 \quad \frac{d \theta}{d t}(1)=0 \\
\theta(t)_{\text {exact }}=\frac{2}{5} \sin \sqrt{\frac{g}{L}} \sin \sqrt{\frac{g t}{L}}+\frac{2}{5} \cos \sqrt{\frac{g}{L}} \cos \sqrt{\frac{g t}{L}} \\
\boldsymbol{\theta}=\left\{\begin{array}{c}
\theta_{1} \\
\theta_{2}
\end{array}\right\}=\left\{\begin{array}{c}
\theta \\
\frac{d \theta}{d t}
\end{array}\right\}, \quad \frac{d \boldsymbol{\theta}}{d t}=\left\{\begin{array}{c}
\frac{d \theta_{1}}{d t} \\
\frac{d \theta_{2}}{d t}
\end{array}\right\} \quad \boldsymbol{f}(\boldsymbol{\theta}, t)=\left\{\begin{array}{c}
\theta_{2} \\
-\frac{g}{L} \theta_{1}
\end{array}\right\} \quad \boldsymbol{\alpha}(1)=\left\{\begin{array}{c}
0.4 \\
0
\end{array}\right\}
\end{gathered}
$$

Then, Second-order Runge-Kutta method for the above system will be:

$$
\theta_{1}^{i+1}=\theta_{1}^{i}+\frac{h}{2}\left(k_{11}+k_{12}\right), \quad \theta_{2}^{i+1}=\theta_{2}^{i}+\frac{h}{2}\left(k_{21}+k_{22}\right)
$$

Where

$$
\begin{array}{ll}
k_{11}=f_{1}\left(t^{i}, \theta_{1}^{i}, \theta_{2}^{i}\right) & k_{12}=f_{1}\left(t^{i}, \theta_{1}^{i}+k_{11} h, \theta_{2}^{i}+k_{21} h\right) \\
k_{21}=f_{2}\left(t^{i}, \theta_{1}^{i}, \theta_{2}^{i}\right) & k_{22}=f_{2}\left(t^{i}, \theta_{1}^{i}+k_{11} h, \theta_{2}^{i}+k_{21} h\right)
\end{array}
$$

A.1.1 To obtain the $\theta(0)$ with 2 time steps, the starting point of iteration was $t=1$ with $h=-0.5$

Time	$d \theta / d t$ or θ_{2}	θ or θ_{1}	$\theta_{\text {exact }}$
1	0.00000	0.40000	0.40000
0.5	1.96200	-0.09050	0.00190
0	-0.8878	$\mathbf{- 0 . 9 6 0 5 2}$	-0.39998

A.1.2 To obtain the $\theta(0)$ with 4 time steps, the starting point of iteration was $t=1$ with $h=-0.2$

Time	$d \theta / d t$ or θ_{2}	θ or θ_{1}	$\theta_{\text {exact }}$
1	0.00000	0.40000	0.40000
0.75	0.98100	0.27738	0.00190
0.5	1.36052	-0.05291	0.28351
0.25	0.81368	-0.37682	-0.28082
0	-0.35991	$\mathbf{- 0 . 4 6 4 7 2}$	-0.39998

B. 1 In order to compute an approximation of the relative error in the two step solution, it was compared with the values in the four step solution.

$$
E_{\text {relative }}=\left|\frac{\theta(0)_{h=0.5}-\theta(0)_{h=0.25}}{\theta(0)_{h=0.5}}\right|=\left|\frac{-0.96052+0.46472}{-0.96052}\right|=\mathbf{0 . 5 1 6 1 7 9 6 6}
$$

C. 1 Since the required $h_{\text {new }}$ is with a relative error three orders of magnitude smaller, it can be said:

$$
\text { Tol }=E_{r} \times 10^{-3}
$$

Taking into account the used method is a second-order, with $O\left(h^{3}\right)$ local error, the new step can be obtained as following:

$$
\begin{gathered}
E_{h}=O\left(h^{3}\right), \quad \text { Tol }=O\left(h_{\text {new }}^{3}\right) \\
h_{\text {new }}=\left(\frac{T o l}{E_{r}}\right)^{\frac{1}{3}} \times h=\left(\frac{E_{r} \times 10^{-3}}{E_{r}}\right)^{\frac{1}{3}} \times h=\frac{\boldsymbol{h}}{\mathbf{1 0}}
\end{gathered}
$$

Exercise-2

$$
\begin{gathered}
\frac{d y}{d x}=y-x^{2}+1 \quad x \in[0.1] \quad y(0)=1 \\
y_{\text {eacxt }}=x^{2}+2 x+1
\end{gathered}
$$

A. 2 Euler method was applied using the following equation

$$
Y_{i+1}=Y_{i}+f\left(x_{i}, Y_{i}\right) h
$$

With $h=0.25$ and starting values $\left(Y_{0}=1, \& x_{0}=0\right)$, the values in each step were:

x_{i}	Y_{i}	$Y_{\text {eacxt }}$
0	1.00000	1.00000
0.25	1.50000	1.56250
0.5	2.10938	2.25000
0.75	2.82422	3.06250
1	$\mathbf{3 . 6 3 9 6 5}$	4.00000

B. 2 The cost of each method is considered as the number of evaluations of slop $f(x, y)$. The step size for Heun method with the same cost as Euler method in the previous section is $\boldsymbol{h}_{\text {Huen }}=\mathbf{0 . 5}$, and it was found as following:

$$
\operatorname{cost}_{\text {Euler }}=1 / \text { step } \quad \operatorname{cost}_{\text {Huen }}=2 / \text { step }
$$

Then

$$
\begin{gathered}
\text { The Cost }=\text { cost }_{\text {euler }} \times n_{\text {euler }}=4 \times 1=4 \\
n_{\text {Huen }}=\frac{\text { Cost }^{\operatorname{cost}_{\text {huen }}}=\frac{4}{2}=2 \quad \rightarrow \quad h_{\text {Huen }}=\frac{\text { ODE } E_{\text {interval }}}{n_{\text {Huen }}}=\frac{1}{2}=0.5}{} .5 \text {. }
\end{gathered}
$$

Then, Huen method was applied using the following equation

$$
Y_{i+1}=Y_{i}+\frac{h}{2}\left(k_{1}+k_{2}\right)
$$

Where:

$$
k_{1}=f\left(x_{i}, Y_{i}\right) \quad k_{2}=f\left(x_{i}, Y_{i}+k_{1} h\right)
$$

With $h=0.5$ and starting values $\left(Y_{0}=1, \& x_{0}=0\right)$, the values in each step were:

x_{i}	Y_{i}	$Y_{\text {eacxt }}$
0	1.00000	1.00000
0.5	2.18750	2.25000
1	$\mathbf{3 . 8 3 5 9 4}$	4.00000

C. 2 To compute the pure interpolation polynomial that fits the results in B, a second-order polynomial is used.

$$
\begin{gathered}
y=a_{0}+a_{1} x+a_{2} x^{2} \\
{\left[\begin{array}{lll}
1 & x_{0} & x_{0}^{2} \\
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
Y_{0} \\
Y_{1} \\
Y_{2}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0.5 & 0.25 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
2.18750 \\
3.83594
\end{array}\right] \rightarrow\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
1.91406 \\
0.92188
\end{array}\right]} \\
\boldsymbol{y}=\mathbf{1}+\mathbf{1 . 9 1 4 0 6} \boldsymbol{x}+\mathbf{0 . 9 2 1 8 8} \boldsymbol{x}^{\mathbf{2}}
\end{gathered}
$$

D2. To approximate the results in obtained in A2 a reasonable choice will be to use Least Squares Fitting with second-order polynomial, because the available information about the solution indicates that it is a polynomial of second order.

$$
\left.\begin{array}{c}
y=c_{0}+c_{1} x+c_{2} x^{2} \\
{\left[\begin{array}{ccc}
5 & \sum x & \sum x^{2} \\
\sum x & \sum x^{2} & \sum x^{3} \\
\sum x^{2} & \sum x^{3} & \sum x^{4}
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
\sum y \\
\sum x y \\
\sum x^{2} y
\end{array}\right]} \\
{\left[\begin{array}{ccc}
1 & 2.5 & 1.875 \\
2.5 & 1.875 & 1.5625 \\
1.875 & 1.5625 & 1.3828125
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
11.073242 \\
7.1875 \\
5.84936523
\end{array}\right]} \\
\boldsymbol{y}=\mathbf{0 . 9 9 9 1 3}+\mathbf{1 . 7 9 9 8 8} \boldsymbol{l}+\mathbf{0 . 8 4 1 5 1 8} \boldsymbol{c}^{\mathbf{c}} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
0.999135 \\
1.799888 \\
0.841518
\end{array}\right] .
$$

It can be seen that Least squares Fitting produced the same polynomial as the one in C 2 with slight difference in the constant values, However if both of them were compared to the analytical solution ($y=$ $x^{2}+2 x+1$) it can be said that the first polynomial with less would describe the solution more accurately.

Exercise-3

A3. Firstly, the solution in Forward Euler method can be represented by a Taylor series expansion about a the value $\left(x_{i}, y_{i}\right)$

$$
\begin{gathered}
y_{i+1}=y_{i}+y_{i}^{\prime} h+\frac{y_{i}^{\prime \prime}}{2!} h^{2}+\cdots+\frac{y_{i}^{(n)}}{n!} h^{n}+R_{n} \\
y_{i+1}=y_{i}+f^{\prime}\left(x_{i}, y_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}, y_{i}\right)}{2!} h^{2}+\cdots+\frac{f^{(n)}\left(x_{i}, y_{i}\right)}{n!} h^{n}+R_{n} \\
y_{i+1}=\underbrace{y_{i}+f^{\prime}\left(x_{i}, y_{i}\right) h}_{\text {Euler Approximation }}+\underbrace{\frac{f^{\prime \prime}\left(x_{i}, y_{i}\right)}{2!} h^{2}+\cdots+\frac{f^{(n)}\left(x_{i}, y_{i}\right)}{n!} h^{n}+R_{n}}_{\text {Local Error or Residual }(R)}
\end{gathered}
$$

For small values of h the local error can be represented by the first term only, neglecting other terms.

$$
R\left(h^{2}\right)=\frac{f^{\prime \prime}\left(x_{i}, y_{i}\right)}{2!} h^{2}=O\left(h^{2}\right)
$$

Therefore, Forward Euler method can be written:

$$
\begin{gathered}
y_{i+1}=y_{i}+f^{\prime}\left(x_{i}, y_{i}\right) h+O\left(h^{2}\right) \\
f^{\prime}\left(x_{i}, y_{i}\right)=\frac{y_{i+1}-y_{i}}{h}-\left\{\frac{O\left(h^{2}\right)}{h}\right\} \rightarrow \text { Truncation } \operatorname{error}(\tau(h))
\end{gathered}
$$

Yes!! , from the above expression it can be said that the method is consistent, because the truncation error is proportional to h which means that when h goes to zero the error also goes to zero.

$$
(\tau(h) \rightarrow 0 \quad \text { when } h \rightarrow 0)
$$

B3. For given ordinary differential equation as

$$
\begin{gathered}
\frac{d y}{d x}=f(x, y) \\
x \in[0.1] \quad y(0)=1
\end{gathered}
$$

Backward Euler method for integration can be stated as following:

$$
Y_{i+1}-Y_{i}-f\left(x_{i+1}, Y_{i+1}\right) h=0
$$

C3. The stability limits is found by putting the absolute value of the amplification factor less than one. Given model equation:

$$
\frac{d y}{d x}=\lambda y
$$

For Forward Euler method:

$$
\begin{array}{r}
Y_{i+1}=Y_{i}+Y_{i} \lambda h=Y_{i} \\
\overbrace{(1+\lambda h)}^{\text {amplification }} \\
|G|<1 \rightarrow|1+\lambda h|<1 \quad \rightarrow \quad-\mathbf{2}<\lambda \boldsymbol{h}<\mathbf{0}
\end{array}
$$

For backward Euler method

$$
\begin{gathered}
Y_{i+1}=Y_{i}+Y_{i+1} \lambda h \rightarrow Y_{i+1}=\frac{\overbrace{1}^{\text {Factor } G}}{(1-\lambda h)} Y_{i} \\
|G|<1 \rightarrow\left|\frac{1}{(1-\lambda h)}\right|<1 \rightarrow|1-\lambda h|>1 \\
\lambda \boldsymbol{h}<\mathbf{0} \& \lambda \boldsymbol{h}>\mathbf{2}
\end{gathered}
$$

D3. Given model equation

$$
\frac{d y}{d x}=f(x, y)=-25 y^{3.5}
$$

Backward Euler method was applied using the following equation

$$
\begin{gathered}
Y_{i+1}-Y_{i}-f\left(x_{i+1}, Y_{i+1}\right) h=0 \\
Y_{i+1}-Y_{i}+25 Y_{i+1}^{3.5} h=0
\end{gathered}
$$

And in order to apply Newton method, the derivative of above equation:

$$
1+87.5 Y_{i+1}^{2.5} h=0
$$

And, then Newton method in each step with two iterations can be stated as following

$$
Y_{i+1}^{j+1}=Y_{i+1}^{j}-\frac{Y_{i+1}^{j}-Y_{i}+25\left(Y_{i+1}^{j}\right)^{3.5} \mathrm{~h}}{1+87.5\left(Y_{i+1}^{j}\right)^{2.5} h} \quad j=0,1,2
$$

Where Y_{i} is chosen as initial guess in each step $\left(Y_{i+1}^{0}=Y_{i}\right)$.

With $h=0.1$ and starting values $\left(Y_{0}=1, \& x_{0}=0\right)$, the values in each step were:

x_{i}	Y_{i}	$Y_{\text {eacxt }}$
0	1.00000	1.00000
0.1	0.62179	0.45276
0.2	0.46025	0.35307

E 3. Euler method was applied using the following equation

$$
Y_{i+1}=Y_{i}+f\left(x_{i}, Y_{i}\right) h
$$

With $h=0.1$ and starting values $\left(Y_{0}=1, \& x_{0}=0\right)$, the values in each step were

x_{i}	Y_{i}	$Y_{\text {eacxt }}$
0	1.00000	1.00000
0.1	-1.50000	0.45276
0.2	$-1.5+10.33378 \mathrm{i}$	0.35307

F 3. In order to find the stability condition in Euler method for the ODE: $\frac{d y}{d x}=-25 y^{3.5}$ must be linearized first.

Using Taylor Series at $y=1$, for $f(y)=-25 y^{3.5}$

$$
f(y)=f(1)+f^{\prime}(1)(y-1)+\cdots+\frac{f^{n}(1)}{n!}(y-n)^{n}+\cdots
$$

Taking only the liner terms

$$
f(y)=62.5-87.5 y
$$

Then, Euler method can written as

$$
\begin{aligned}
& Y_{i+1}=Y_{i}+\left(62.5-87.5 Y_{i}\right) h=Y_{i} \xlongequal[\begin{array}{c}
\text { amplification } \\
\text { Factor } G
\end{array}]{(1-87.5 h)}+62.5 \\
& |G|<1 \rightarrow|1-87.5 h|<1 \quad \rightarrow \quad \mathbf{0}<\boldsymbol{h}<\frac{\mathbf{2}}{\mathbf{8 7 . 2}}
\end{aligned}
$$

Then, Matlab code was used to check the stability of the given step sizes, and the result was:

- For $h=\frac{1}{10} \& h=\frac{1}{15}$ the results fitted the stability condition, because in both cases the value of y became minus after one step, and in the second it became complex number.
- As for $h=\frac{1}{30}$, the stability condition did not hold because there were no minus values or complex number for y , and by increasing the number of steps it converge.
- For $h=\frac{1}{45} \& h=\frac{1}{90}$ the results fitted the criteria in the stability condition, and the solution was stable and smooth.

From this analysis, it can be stated that the maximum possible step size is $\frac{\mathbf{1}}{\mathbf{1 5}}$

Exercise-4

A. 4 For the second-order ordinary equation

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}+\omega^{2} y=0 \\
x \in[0.1] \quad y(0)=0 \quad \frac{d y}{d t}(0)=\omega \\
y(x)_{\text {exact }}=\sin (\omega x)
\end{gathered}
$$

The reduced system of first order ODEs is:

$$
\boldsymbol{y}=\left\{\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right\}=\left\{\begin{array}{c}
y \\
\frac{d y}{d t}
\end{array}\right\}, \quad \frac{d \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{t}}=\left\{\begin{array}{c}
\frac{d y_{1}}{d t} \\
\frac{d y_{2}}{d t}
\end{array}\right\} \quad \boldsymbol{f}(\boldsymbol{y}, x)=\left\{\begin{array}{c}
y_{2} \\
-\omega^{2} y_{1}
\end{array}\right\} \quad \boldsymbol{\alpha}(1)=\left\{\begin{array}{c}
0 \\
\omega
\end{array}\right\}
$$

B. 4 Then, The Forward Euler method for the above system will be:

$$
Y_{1}^{i+1}=Y_{1}^{i}+f_{1}\left(x_{i}, Y_{1}^{i}, Y_{2}^{i}\right) h
$$

$$
Y_{2}^{i+1}=Y_{2}^{i}+f_{2}\left(x_{i}, Y_{1}^{i}, Y_{2}^{i}\right) h
$$

To obtain the $y_{1}(1) \& y_{2}(1)$ with 4 time steps, the starting point of iteration was $x=0, y_{1}(0)=0$ $y_{2}(0)=\omega=3$ with $h=0.25$

x	$d y / d x$ or y_{2}	y or y_{1}	$y_{\text {exact }}$
0	3.00000	0.00000	0.00000
0.25	3.00000	0.75000	0.68164
0.5	1.31250	1.50000	0.99749
0.75	-2.06250	1.82813	0.77807
1	-6.17578	$\mathbf{1 . 3 1 2 5 0}$	0.14112

C. 4 Then, the solution with 8 time steps was:

x	$d y / d x$ or y_{2}	y or y_{1}	$y_{\text {exact }}$
0.000	3.00000	0.00000	0.00000
0.125	3.00000	0.37500	0.36627
0.25	2.57813	0.75000	0.68164
0.375	1.73438	1.07227	0.90227
0.5	0.52808	1.28906	0.99749
0.625	-0.92212	1.35507	0.95409
0.75000	-2.44658	1.23981	0.77807
0.87500	-3.84136	0.93399	0.49392
1.00000	-4.89209	$\mathbf{0 . 4 5 3 8 2}$	0.14112

In order to compute an approximation of the relative in the 8 steps solution, the solution will be compared with the value in the four step solution.

$$
E_{\text {relative }}=\left|\frac{y(1)_{h=0.125}-\theta(1)_{h=0.25}}{\theta(1)_{h=0.125}}\right|=\left|\frac{0.45382-1.31250}{0.45382}\right|=1.892115817
$$

The required step size is to obtain a numerical solution with three significative digits, so it can be said:

$$
\text { Tol }=10^{-4}
$$

And since the used method is a first order method, with $O\left(h^{2}\right)$ local error, the new step can be obtained as following:

$$
\begin{gathered}
E_{h}=O\left(h^{2}\right), \quad T o l=O\left(h_{\text {new }}^{2}\right) \\
h_{\text {new }}=\left(\frac{\text { Tol }}{E_{r}}\right)^{\frac{1}{2}} \times h=\left(\frac{10^{-4}}{1.892115817}\right)^{\frac{1}{2}} \times 0.125=9.08732697 \times 10^{-4} \\
n=\frac{1}{9.08732697} \times 10^{4}=1100.43 \cong 1100 \\
h_{\text {new }}=\frac{\mathbf{1}}{\mathbf{1 1 0 0}}
\end{gathered}
$$

With the new step $\boldsymbol{y}(\mathbf{1})=\mathbf{0 . 1 4 1 7 0 5 8 9}$, where the exact is $\boldsymbol{y}_{\text {exact }}(\mathbf{1})=\mathbf{0 . 1 4 1 1 2}$.

