	Md Tariqui Islam
	Numerical Methods for Partial Differential Equation: ODE Exercise - 2
9)	$\frac{Ans-1}{\frac{d^2\theta}{dt^2} + \frac{9}{L}\theta = 0}$
	let $\frac{d\theta}{dt} = Z$ eq(1) $\theta(1) = 0.4 \text{ rad}$ = $f_1(t, 0, Z)$
	$\frac{d^{2}}{dt} + \frac{9}{10} = 0$ $\frac{d^{2}}{dt} - \frac{9}{10} = 0 - \frac{1}{10} - \frac{1}{10} = 0$ $\frac{d^{2}}{dt} - \frac{9}{10} = 0 - \frac{1}{10} - \frac{1}{10} = 0$ $\frac{d^{2}}{dt} - \frac{9}{10} = 0$ $\frac{d^{2}}{dt}$
	2nd order rouge kutta method
	$\theta_{i+1} = \theta_i + \left(\frac{1}{2}K_1^2 + \frac{1}{2}K_2^2\right)h$ $Z_{i+1} = Z_i + \left(\frac{1}{2}K_1^2 + \frac{1}{2}K_2^2\right)h$
	where,
	$K_{1}^{0} = f_{1}(t; \theta; z_{1})$ $K_{2}^{0} = f_{1}(t; th, \theta; tk_{1}^{0}h, z_{1}^{1} + k_{1}^{2}h)$
	$k_1^2 = f_2(t_1, \theta_1, t_1)$
oppod h	$K_{2}^{2} = f_{2}(t, th, \theta; t, k_{1}^{2}h, z; t, k_{1}^{2}h)$ CamScanner

Hith 2 time sleps

$$1=0, h=-0.5, \theta_0=0.4, t_0=1, t_0=1, t_0=0.4/5$$
 $K_1^2 = f_1(t_0, \theta_0, t_0)$
 $= f_1(t_1, \theta_0, t_0)$
 $= f_2(t_1, \theta_0, t_0)$
 $= f_2(t_1, \theta_0, t_0)$
 $= f_3(t_0, t_0, t_0)$
 $=$

When i=1, +,=0.5, h=-0.5, 0,=-0.09 2,= 1.96 Ki=f, (1, 0, 2) = f, (0.5, -0.09, 1.96) = 1.96 K1 = f2 (+1, 01, 21) = f2 (0.5, -0.09, 1.96) = 0.882 K2=f1(11+h, 01+K1h, Z1+K2h) = f1 (0, -1-97, 1.519) . = 1.519 k2 = f2 (+1+h, O,+K10h, Z1+K1 h) =f2 (0, -1.97, 1.519) = 19.306 02 = 01 + (1 K1 + 1 K2)h = -0.09 + (= x1.96 + = x1.519) x-0.5 = -0.95975

With 4 time step 1=0, h=-0.25, to=1, 0=0.4 rad to 70=0 rad/s K1 = f1 (1, 0.4, 0) = 0 K1 = f2 (1,0.4,0) = -3.93 K2 = f1 (1-0.25, 0.4+0, 0+ (-3.93x-0.25)) = {1 (0.75, 0.4, 0.98) =0.98 K2 = f2 (0.75, 0.4, 0.98) = -3.92 01 = 00+ (1 K1 + 1 K2) h $=0.4+\left(\frac{1}{2}\times0+\frac{1}{2}\times0.98\right)\times-0.25$ = 0.2775 71= 70+(1 K1+ 1 K2)h = 0+ (\frac{1}{2} \times - 3.92 + \frac{1}{2} \times - 3.92 \) \times - 0.25 :098

when,

i=1, +1=0.75, h=-0.25, 0,=0.2775 7,=0.98

 $K_1^9 = f_1(0.75, 0.3775, 0.98)$ = 0.98

 $K_1^2 = f_3(0.75, 0.2775, 0.98)$ = -2.7195

 $16^{9} = f_{1}(0.5, 0.0325, 1.659875)$ = 1.659875

 $K_{2}^{2} = f_{2}(0.5, 0.0325, 1.659875)$ = -0.3185

 $0_{2} = \theta_{1} + \left(\frac{1}{2}K_{1}^{0} + \frac{1}{2}K_{2}^{0}\right)h$ $= 0.2775 + \left(\frac{1}{2}0.98 + \frac{1}{2}1.659875\right) \times -0.25$ = -0.05248

 $\begin{aligned} z_2 &= z_1 + \left(\frac{1}{2}k_1^2 + \frac{1}{2}k_2^2\right)h \\ &= 0.98 + \left(\frac{1}{2}x - 2.7195 + \frac{1}{2}x \cdot 0.3185\right)x - 0.25 \\ &= 1.35975 \end{aligned}$

Histor,
$$i=2$$
, $h=-0.25$, $f_{2}=0.5$, $\theta_{2}=-0.05248$, $f_{2}=1.35975$
 $K_{1}^{2}=f_{3}(0.5, -0.05248, 1.35975)$
 $= 0.514304$
 $K_{2}^{2}=f_{1}(0.8, -0.3924175, 1.231174)$
 $= 1.231174$
 $K_{2}^{2}=f_{2}(0.25, -0.3924175, 1.231174)$
 $= 3.8456915$
 $\theta_{3}=\theta_{2}+\left(\frac{1}{2}K_{1}^{0}+\frac{1}{2}K_{2}^{0}\right)h$
 $= -0.05248+\left(\frac{1}{2}\times1.35975+\frac{1}{2}\times1.231174\right)\times-0.25$
 $= -0.37635$
 $f_{3}=f_{3}+\left(\frac{1}{2}K_{1}^{2}+\frac{1}{2}K_{2}^{2}\right)h$
 $= 1.35975+\left(\frac{1}{2}\times0.514304+\frac{1}{2}\times3.8456915\right)\times-0.25$
 $= 0.8147505$

when, i=3, t3=+0.25 h=-0.25, 03=-0.37635, 73=0.81476 Ki = f, (0.25, -0.37635, 0.8147505) = 0.8147505 $K_1^{\frac{1}{2}} = f_2(0.25, -0.37635, 0.8147505)$ = 3.68873 $K_2 = f_1(0, -0.580037, -0.107307)$ =-0.107307 04 = 03 + (= K1 + = K2) h $=-0.37635+\left(\frac{1}{2}\times0.8147505+\frac{1}{2}\times-0.107307\right)\times-0.25$ =-0.46478 b) 3-slep -> 02 = -0.95975 4-Step -> 04 = -0.46478 Relative error = $\frac{\theta_2 - \theta_0}{\theta_4}$ -0.95975-(-0.46478) × 100 =106.496/

C) Using $h^* = \left(\frac{t_{01}}{F}\right)h$ where, $h' = (163)^{\frac{1}{3}} \times 0.5$ 50, time step = 1-0 = 20 steps

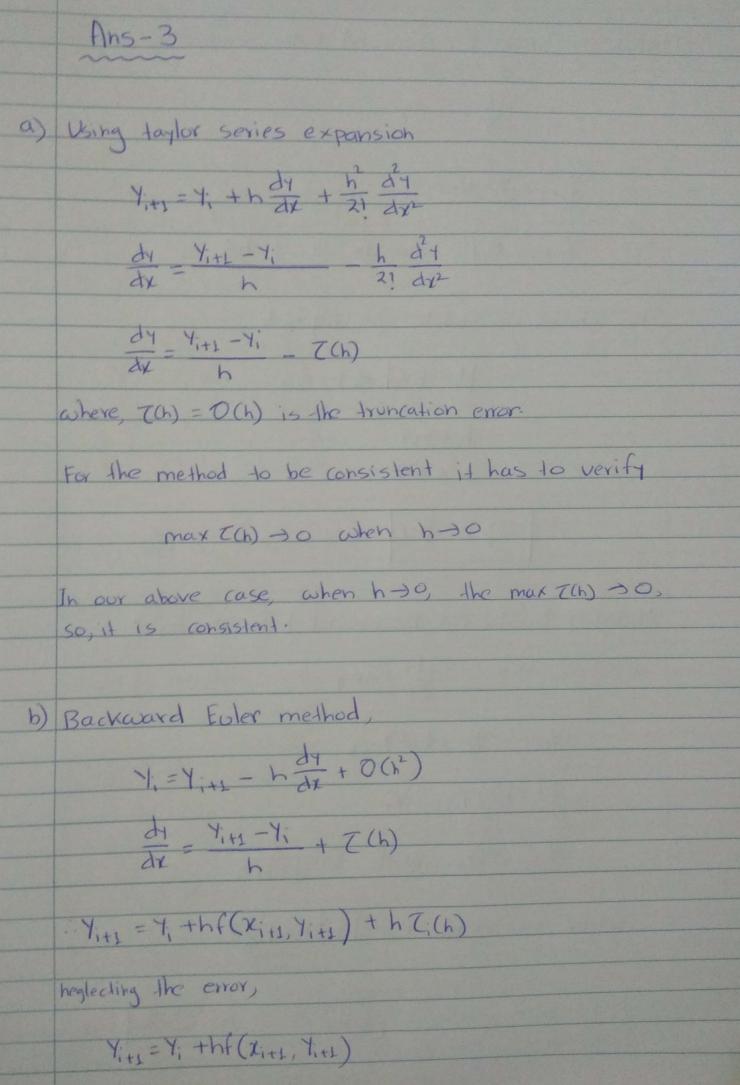
	Ans-2
9)	$\frac{dy}{dx} = y - x^2 + 1$
	Y(0) = 1
	h = 0.25
	11 = Yo + hf (xo to) when, xo = 0, Yo = 1
	Y3 - 1 + 0.25 (1-0+1)
	= 1.5
	Y2 = Y1 + 0.25 f(X1 Y1) where, X1 = 0.25, Y1 = 1.5
	42 = 1.5 + 0.25f(0.25, 1.5)
	= 2.109375
	Y3 = Y2 + 025 f (X2 +2) where, X2 = 0.5, Y2 = 2.109375
	Y3 = 2.109375 + 0.25 f (0.5, 2.109375)
	= 7.82421875
	14 = 43 + 0.25 f(x3 43) where, x3 = 0.75 43 = 3.82421875
	44 = 2.82421875 + 0.25f (0.75, 2.82421875)
	= 3.639648438

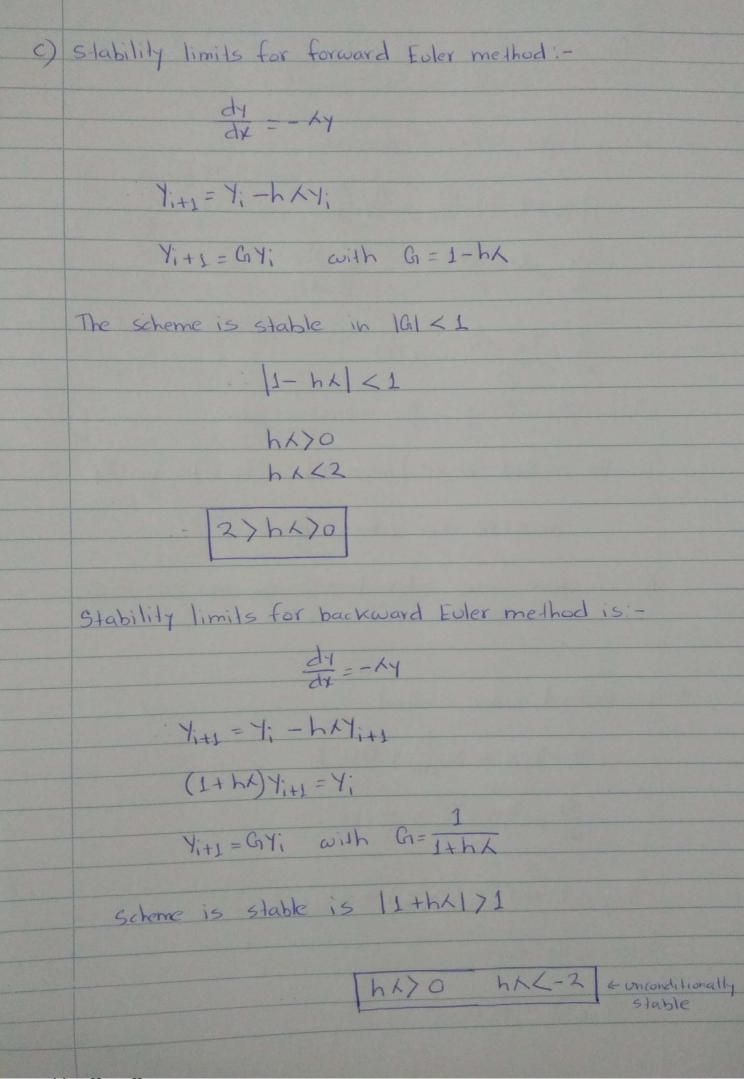
b) Houn

Yith = Y, +
$$\frac{h}{2}$$
 (K1+K2)

 $\frac{dV}{dx} = V - x^2 + 1$
 $K_3 = f(x_1, Y_1)$
 $K_2 = f(x_1 + h, Y_1 + h K_1)$
 $i = 0$, $X_0 = 0$, $Y_0 = 1$, $h = 0.25$
 $K_1 = f_1(x_0, Y_0)$
 $= f_3(x_0 + h, Y_0 + K_1 h)$
 $= f_1(0 + 0.25, 1 + 2 \times 0.25)$
 $= f_1(0.25, 0.1.5)$
 $= 2.4375$
 $Y_1 = Y_0 + \frac{0.25}{2}(2 + 2.4375)$
 $= 1 + \frac{0.25}{2}(2 + 2.4375)$
 $= 3.5547$

	when,
-	X1=0.25 Y1=1.5547 h=0.25
-	
	K1 = F, (0.25, 1.5547)
	-2.4923
	K2=f(0.5, 2.17775)
	=2.92775
	12=1,+2 (K1+K2)
	= 1.5547 + 0.25 (2.4922 +2.92775)
	= 2.5547 + -2 (1.77)
	=2.2322
	when,
	$\chi_2 = 0.5$, $\chi_2 = 2.2322$ h=0.25
	$K_1 = f(0.5, 2.2322)$
	= 2.9822
	K2={(075, 2.97775)
	= 3 41525
	Y3 = Y2 + 2 (K1 + K2)
	= 2.2322 + 0.25 (2.9822 + 3.41525)
	= 3.0319
	ov CamScanner


when,


$$K_1 = f_3(0.75, 3.0319)$$

= 3.4694

 $K_2 = f_3(0.75 + 0.25, 3.0319 + 3.4694 \times 0.25)$ - $f_3(1, 3.89925)$

= 3.89935

d)
$$\frac{dy}{dx} = -25y^{3.5}$$
 $y(0) = 1$
 $h = \frac{1}{10}$

when i=0,

 $y_{1+1} = y_1 + hf(x_{1}, y_1)$
 $y_1 = y_2 + hf(x_1, y_1)$
 $y_1 = y_1 + \frac{1}{10}(-25y_1^{3.5})$
 $y_2 = y_1^{3.5} + y_1 - y_1 = 0$
 $y_1 = y_1 + \frac{1}{10}(-25y_1^{3.5})$
 $y_2 = y_1^{3.5} + y_1 - y_1 = 0$
 $y_3 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1 - y_2 = 0$
 $y_4 = y_1^{3.5} + y_1^{3$

when, $i=3$, $V_1=0.62178$ $h=\frac{1}{10}$
$Y_2 = Y_1 + hf(X_2 Y_2)$ $Y_3 = 0.62178 + \frac{1}{10}(-25Y_2^{3.5})$
Y2 = 0.62178 - 2.5 Y2
$\frac{2.5y_2^{3.5} + 1_2 - 0.62178 = 0}{f(42) = 2.5y_2^{3.5} + 1_2 - 0.62178 = 0}$
(Yz) = 8.75 Y2 + 1 Using Newton Method with initial guess (Yz) = 0.62178
$(Y_2)_1 = (Y_2)_0 - \frac{f(Y_2)}{f'(Y_2)}$ $= 0.62178 - \frac{0.47388}{3.66747}$
-0.49257
$(4)_2 = (42)_1 - \frac{f(42)}{f(42)}$ 0.0804801
$= 0.49257 - \frac{0.0804801}{2.48997}$ $= 0.4602$