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1 PROBLEM 1*

Description:

f (x) = x3 +2x2 +10x −20 = 0, x(0) = 3
p

20, I ter ati ons = I = 4 (1.1)

Newton’s method:

x(k+1) = x(k) − f (x(k))

f ′(x(k))

f ′(x) = 3x2 +4x +10

x(k+1) = x(k) − x3 +2x2 +10x −20

3x2 +4x +10

(1.2)

In addition the relative error and roots are calculated by:

f (x) = x3 +2x2 +10x −20 = (x −1.3688)(x2 −14.6113) = 0

xr =
−1.6844+3.4313i
−1.6844−3.4313i
1.3688+0.0000i


e(k)

r = x(k+1) −xr

xr

(1.3)
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Note that the root of interest is the third one which is real. Using Matlab to iterate from x(0)

to x(4), same for the relative error, the results are:

k x(k) e(k)
r

0 2.7144 0.9831
1 1.7396 0.2709
2 1.4050 0.0264
3 1.3692 0.0003
4 1.3688 0.0000

 (1.4)

Then plotting the relative error in linear and logarithmic scale:
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2 PROBLEM 5*

Third-order numerical quadratures in intervals (0,1).

A)MINIMUM NUMBER OF INTEGRATION POINTS, AND SPECIFY THE INTEGRATION

POINTS AND WEIGHTS.

Gauss quadrature: 2n +2 dof
or der−−−−→ 2n +1 = 3, n = 1

The number of points is n +1 = 2

Therefore the integration points (zi ) and weights (wi ) are:

zi = (−1i )

√
1

3
, wi = 1, i = 1,2 | i ∈Z (2.1)
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B)IS IT POSSIBLE TO OBTAIN A THIRD-ORDER QUADRATURE WITH THE FOLLOWING

FOUR INTEGRATION POINTS: x0 = 1/4, x1 = 1/2, x2 = 3/4 AND x3 = 1? IF IT IS POSSIBLE,
COMPUTE THE CORRESPONDING WEIGHTS; OTHERWISE, JUSTIFY WHY NOT.

A priori, since the interval is from 0 to 1, thus the domain is semi-open. But since the points
are equally spaced and re-arranging the domain for a third-order from [1/4, 1] , the expression
obtained is no other than Simpson’s second rule:

I = 3h

8
[ f (x0)+3 f (x1)+3 f (x2)+ f (x3)]

h = (x3 −x0)

2n +1
= 1− 1

4

2+1
= 1

4[
i 0 1 2 3

wi
3
8

9
8

9
8

3
8

] (2.2)

3 PROBLEM 6*

A) IF N+1 POINTS GAUSSIAN QUADRATURE IS USED FOR NUMERICAL INTEGRATION

STATE THE ORDER OF THE POLYNOMIAL THAT IS INTEGRATED EXACTLY

Number of points : n +1
Order: 2n +1

B) N=2, WHICH OF THE FOLLOWING INTEGRALS WILL BE INTEGRATED EXACTLY?

n = 2
or der−−−−→ 2∗2+1 = 5

i)
∫ 1

o si n(x)d x −→ No, since si n(x) ≈∑i=3
(2n+1,i=1)

x i

i ! = x + x3

3! + x5

5! + x7

7! , 7 > 5

ii)
∫ 1

o x3d x −→ Yes, 4 < 5

iii)
∫ 1

o x3d x −→ Yes, 3 < 5

iv)
∫ 1

o x5.5d x −→ No, 5.5 > 5
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4 PROBLEM 7*∫ 1

0
12xd x,

∫ 1

0
(5x3 +2x)d (4.1)

intervals = 2

TRAPEZOIDAL RULE

m = 2, h = b −a

m
= 1−0

2
= 1

2

Ii = h

2

[
f (xi−1)+ f (xi )

]
I = h

2

[
f (x0)+2

(m−1∑
i=1

f (xi )
)+ f (xm)

]
I I = 1

4

[
0+2

(
6
)+12

]
= 6, E =α f ′′(x) −→ d 2(12x)

d x2 = 0

I I I = 1

4

[
0+2

(
5(

1

2
)3 +1

)+7
]
= 41

16
, E =− (b −a)3

12m2 f ′′(µ) =−5

8
µ=− 5

16

(4.2)

SIMPSON’S RULE

m = 2, h = b −a

2m
= 1−0

2∗2
= 1

4

Ii = h

3

[
f (x2i−2)+4 f (x2i−1)+ f (x2i )

]
I = h

3

m∑
i=1

[
f (x2i−2)+4 f (x2i−1)+ f (x2i )

]
I I = 1

12

[
[0+4(3)+6]+ [6+4(9)+12]

]
= 6, E =α f 4)(x) −→ d 4(12x)

d x4 = 0

I I I = 1

12

[
[0+20(

1

4
)3 + 8

4
+5(

1

2
)3 + 2

2
]+ [5(

1

2
)3 + 2

2
+20(

3

4
)3 + 24

4
+5(1)3 +2(1)

]
= 9

4

E =α f 4)(x) −→ d 4(5x3 +2x)

d x4 = 0

(4.3)

The methods behave as expected.
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5 PROBLEM 10*

Perform the numerical integration of∫ 1

0

∫ 1

0
(9x3 +8x2)(y3 + y)d xd y (5.1)

using Simpson’s rule in each direction.Is the approximation behaving as expected?

To integrate this equation, first the value of the function on x = [0,1] and y = [0,1] will be
obtained. Thus Simpson’s rule for m = 1,n = 1 will be performed in order to avoid the error
term:

I = h2

9mn
[ f (x0)+4 f (x1)+ f (x2)]− h5

90
f 4)(µ), f 4)(x, y) = 0

xi = i

2
, y j = j

2
, i = 0, ...,2, j = 0, ...,2; i , j ∈Z

f (xi , y j ) =


f (0, y j ) = [0,0,0]

f (1, y j ) = [0,6.25,34]

f (xi ,0) = [0,0,0,0]

f (xi ,1) = [0,10.625,34]

h = 1

2

I = 1

36
[0+0+4(

25

4
)+34+0+0+4(

85

8
)+34] = 271

72

(5.2)

Therefore there is no error and the approximation is the same as the analytical answer.
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