Partial Differential Equations - Assignment 1

Rafael Pacheco 77128580

November 21, 2016

1 Problem 1*

Description:

$$
\begin{equation*}
f(x)=x^{3}+2 x^{2}+10 x-20=0, \quad x^{(0)}=\sqrt[3]{20}, \quad \text { Iterations }=I=4 \tag{1.1}
\end{equation*}
$$

Newton's method:

$$
\begin{array}{r}
x^{(k+1)}=x^{(k)}-\frac{f\left(x^{(k)}\right)}{f^{\prime}\left(x^{(k)}\right)} \\
f^{\prime}(x)=3 x^{2}+4 x+10 \tag{1.2}\\
x^{(k+1)}=x^{(k)}-\frac{x^{3}+2 x^{2}+10 x-20}{3 x^{2}+4 x+10}
\end{array}
$$

In addition the relative error and roots are calculated by:

$$
\begin{array}{r}
f(x)=x^{3}+2 x^{2}+10 x-20=(x-1.3688)\left(x^{2}-14.6113\right)=0 \\
x_{r}=\left[\begin{array}{c}
-1.6844+3.4313 i \\
-1.6844-3.4313 i \\
1.3688+0.0000 i
\end{array}\right] \tag{1.3}\\
e_{r}^{(k)}=\frac{x^{(k+1)}-x_{r}}{x_{r}}
\end{array}
$$

Note that the root of interest is the third one which is real. Using Matlab to iterate from $x^{(0)}$ to $x^{(4)}$, same for the relative error, the results are:

$$
\left[\begin{array}{ccc}
k & x^{(k)} & e_{r}^{(k)} \tag{1.4}\\
0 & 2.7144 & 0.9831 \\
1 & 1.7396 & 0.2709 \\
2 & 1.4050 & 0.0264 \\
3 & 1.3692 & 0.0003 \\
4 & 1.3688 & 0.0000
\end{array}\right]
$$

Then plotting the relative error in linear and logarithmic scale:

2 Problem 5*

Third-order numerical quadratures in intervals $(0,1)$.
a)Minimum number of integration points, and specify the integration POINTS AND WEIGHTS.
Gauss quadrature: $2 n+2$ dof $\xrightarrow{\text { order }} \quad 2 n+1=3, \quad n=1$
The number of points is $n+1=2$
Therefore the integration points $\left(z_{i}\right)$ and weights $\left(w_{i}\right)$ are:

$$
\begin{equation*}
z_{i}=\left(-1^{i}\right) \sqrt{\frac{1}{3}}, \quad w_{i}=1, \quad i=1,2 \quad \mid \quad i \in \mathbb{Z} \tag{2.1}
\end{equation*}
$$

B) IS IT POSSIBLE TO OBTAIN A THIRD-ORDER QUADRATURE WITH THE FOLLOWING FOUR INTEGRATION POINTS: $x_{0}=1 / 4, x_{1}=1 / 2, x_{2}=3 / 4$ AND $x_{3}=1$? IF IT IS POSSIBLE, COMPUTE THE CORRESPONDING WEIGHTS; OTHERWISE, JUSTIFY WHY NOT.

A priori, since the interval is from 0 to 1 , thus the domain is semi-open. But since the points are equally spaced and re-arranging the domain for a third-order from [1/4, 1] , the expression obtained is no other than Simpson's second rule:

$$
\begin{array}{r}
I=\frac{3 h}{8}\left[f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)\right] \\
h=\frac{\left(x_{3}-x_{0}\right)}{2 n+1}=\frac{1-\frac{1}{4}}{2+1}=\frac{1}{4} \tag{2.2}\\
{\left[\begin{array}{rrrrr}
i & 0 & 1 & 2 & 3 \\
w_{i} & \frac{3}{8} & \frac{9}{8} & \frac{9}{8} & \frac{3}{8}
\end{array}\right]}
\end{array}
$$

3 Problem 6*

A) IF $\mathrm{N}+1$ POINTS GAUSSIAN QUADRATURE IS USED FOR NUMERICAL INTEGRATION STATE THE ORDER OF THE POLYNOMIAL THAT IS INTEGRATED EXACTLY

Number of points : $n+1$
Order: $2 n+1$
B) $\mathrm{N}=2$, WHICH OF THE FOLLOWING INTEGRALS WILL BE INTEGRATED EXACTLY?

$$
n=2 \quad \xrightarrow{\text { order }} \quad 2 * 2+1=5
$$

i) $\int_{o}^{1} \sin (x) d x \quad \rightarrow \quad$ No, since $\quad \sin (x) \approx \sum_{(2 n+1, i=1)}^{i=3} \frac{x^{i}}{i!}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}, \quad 7>5$
ii) $\int_{o}^{1} x^{3} d x \quad \rightarrow \quad$ Yes, $4<5$
iii) $\int_{o}^{1} x^{3} d x \quad \rightarrow \quad$ Yes, $3<5$
iv) $\int_{o}^{1} x^{5.5} d x \quad \rightarrow \quad$ No, $5.5>5$

4 PROBLEM 7*

$$
\begin{equation*}
\int_{0}^{1} 12 x d x, \quad \int_{0}^{1}\left(5 x^{3}+2 x\right) d \tag{4.1}
\end{equation*}
$$

intervals = 2

Trapezoidal rule

$$
\begin{gather*}
m=2, \quad h=\frac{b-a}{m}=\frac{1-0}{2}=\frac{1}{2} \\
I_{i}=\frac{h}{2}\left[f\left(x_{i-1}\right)+f\left(x_{i}\right)\right] \\
I=\frac{h}{2}\left[f\left(x_{0}\right)+2\left(\sum_{i=1}^{m-1} f\left(x_{i}\right)\right)+f\left(x_{m}\right)\right] \tag{4.2}\\
I_{I}=\frac{1}{4}[0+2(6)+12]=6, \quad E=\alpha f^{\prime \prime}(x) \rightarrow \frac{d^{2}(12 x)}{d x^{2}}=0 \\
I_{I I}=\frac{1}{4}\left[0+2\left(5\left(\frac{1}{2}\right)^{3}+1\right)+7\right]=\frac{41}{16}, \quad E=-\frac{(b-a)^{3}}{12 m^{2}} f^{\prime \prime}(\mu)=-\frac{5}{8} \mu=-\frac{5}{16}
\end{gather*}
$$

SIMPSON'S RULE

$$
\begin{gather*}
m=2, \quad h=\frac{b-a}{2 m}=\frac{1-0}{2 * 2}=\frac{1}{4} \\
I_{i}=\frac{h}{3}\left[f\left(x_{2 i-2}\right)+4 f\left(x_{2 i-1}\right)+f\left(x_{2 i}\right)\right] \\
I=\frac{h}{3} \sum_{i=1}^{m}\left[f\left(x_{2 i-2}\right)+4 f\left(x_{2 i-1}\right)+f\left(x_{2 i}\right)\right] \tag{4.3}\\
I_{I}=\frac{1}{12}[[0+4(3)+6]+[6+4(9)+12]]=6, \quad E=\alpha f^{4)}(x) \rightarrow \frac{d^{4}(12 x)}{d x^{4}}=0 \\
I_{I I}=\frac{1}{12}\left[\left[0+20\left(\frac{1}{4}\right)^{3}+\frac{8}{4}+5\left(\frac{1}{2}\right)^{3}+\frac{2}{2}\right]+\left[5\left(\frac{1}{2}\right)^{3}+\frac{2}{2}+20\left(\frac{3}{4}\right)^{3}+\frac{24}{4}+5(1)^{3}+2(1)\right]=\frac{9}{4}\right. \\
E=\alpha f^{4)}(x) \rightarrow \frac{d^{4}\left(5 x^{3}+2 x\right)}{d x^{4}}=0
\end{gather*}
$$

The methods behave as expected.

5 Problem 10*

Perform the numerical integration of

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1}\left(9 x^{3}+8 x^{2}\right)\left(y^{3}+y\right) d x d y \tag{5.1}
\end{equation*}
$$

using Simpson's rule in each direction.Is the approximation behaving as expected?
To integrate this equation, first the value of the function on $x=[0,1]$ and $y=[0,1]$ will be obtained. Thus Simpson's rule for $m=1, n=1$ will be performed in order to avoid the error term:

$$
\left.\left.\left.\begin{array}{c}
I=\frac{h^{2}}{9 m n}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right]-\frac{h^{5}}{90} f^{4}(\mu), \quad f^{4}(x, y)=0 \\
x_{i}=\frac{i}{2}, \quad y_{j}=\frac{j}{2}, \quad i=0, \ldots, 2, \quad j=0, \ldots, 2 ; \quad i, j \in \mathbb{Z}
\end{array}\right\} \begin{array}{l}
f\left(0, y_{j}\right)=[0,0,0] \\
f\left(1, y_{j}\right)=[0,6.25,34] \tag{5.2}\\
f\left(x_{i}, 0\right)=[0,0,0,0] \\
f\left(x_{i}, 1\right)=[0,10.625,34]
\end{array}\right\} \begin{array}{r}
h=\frac{1}{2}
\end{array}\right\} \begin{aligned}
& I=\frac{1}{36}\left[0+0+4\left(\frac{25}{4}\right)+34+0+0+4\left(\frac{85}{8}\right)+34\right]=\frac{271}{72}
\end{aligned}
$$

Therefore there is no error and the approximation is the same as the analytical answer.

