## FLOOD RISK IN CASE OF YESA'S DAM BREAK

Lorenzo Gracia Llinares

CIMNE / Universidad Politécnica de Cataluña

November 11, 2015

## Motivation



Tous (1982) and Vajont (1963)

## Index

1. Introduction and Matemathical Foundations
2. Software IBER
3. Case Of Analysis
4. Results and Discussions
5. Conclusions

## 1. Introduction and Matemathical Foundations

- Incompressible Navier Stokes 3D for Isotropic Newtonian fluids

$$
\begin{gathered}
\partial_{t} \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}-\nu \Delta \mathbf{u}+\nabla p=\mathbf{f} \\
\nabla \cdot \mathbf{u}=0
\end{gathered}
$$

- Kolmogorov Theory (1941)
- It allows to obtain estimations of the scales necessary for the discretization of the problem


## 1. Introduction and Matemathical Foundations

- Example of Kolmogorov Theory (1941)

$$
\nu=\frac{I_{0}}{R^{3 / 4}} \quad \tau=\frac{\tau_{0}}{R^{1 / 2}}
$$

where $I_{0}$ is the characteristhic length, $\nu$ is the smallest space scale, $R e$ is the Reynolds Number, $\tau_{0}$ is the charactheristic time and, $\tau$ is the smallest time scale

- Using $I_{0}=1 \mathrm{~m}$ and $\tau_{0}=1 \mathrm{seg}$, finally we obtain;

$$
N=R e^{11 / 4}
$$

For a hydraulic problem, an usual value for the Reynolds number can be of order to $10^{6}$ then the needed number of nodes would be $10^{16}$

## 1. Introduction and Matemathical Foundations

- Simplifications of Navier Stokes Equations
- Study of turbulent flux $\Rightarrow$ Application of Reynold's Theory

$$
u=\bar{u}+u^{\prime}
$$

where $\bar{u}$ is the average variable and $u^{\prime}$ is the turbulent fluctuation.

$$
\bar{u}=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} u d t
$$

- Depth integration

$$
u=\frac{1}{h} \int_{z_{0}}^{z_{0}+h} \bar{u} d z
$$

## 1. Introduction and Matemathical Foundations

- Saint Venant 2D
- Neglecting Coriolis effect (not important in rivers)
- Applying Leibnitz rule derivation under the integral sign
- Finally we obtain

$$
\begin{aligned}
\frac{\partial h}{\partial t}+\frac{\partial(h u)}{\partial x}+\frac{\partial(h v)}{\partial y} & =0 \\
\frac{\partial(h u)}{\partial t}+\frac{\partial}{\partial x}\left(h u^{2}+g \frac{h^{2}}{2}\right)+\frac{\partial(h u v)}{\partial y} & =g h\left(S_{0 x}-S_{f x}\right) \\
\frac{\partial(h v)}{\partial t}+\frac{\partial(h u v)}{\partial y}+\frac{\partial}{\partial y}\left(h v^{2}+g \frac{h^{2}}{2}\right) & =g h\left(S_{0 y}-S_{f y}\right)
\end{aligned}
$$

## 2. Software IBER

- 2D Dimensinal Analysis through Saint Venant 2D
- Finite Volumes in 2D
- GID Interface
- Non-linear Hyperbolic System $\Rightarrow$ Roe Scheme



## 3. Case of Analysis

- Yesa's Dam and Reservoir
- Gravity dam (480.000 $\mathrm{m}^{3}$ of concrete)
- Crest length: 398 m
- Capacity: $446.90 \mathrm{hm}^{3}$
- Area: 2098 ha
- Area of basin: $2170 \mathrm{Km}^{2}$


Ubication of Yesa's Dam

## 3. Case of Analysis

- Input Data
- MDT $25 \times 25$ (ASCII format)
- A file of land use (SIOSE 2005)
- Characteristhic curve of the reservoir


Topographic map of study area

## 3. Case of Analysis

- Mesh and Roughness
- A structured triangular mesh
- Size element: 200
- Number of elements: about 1.000.000



## 3. Case of Analysis

- Break according ICOLD
- Duration: 24 hours
- Partially breach, $1 / 3$ of the whole body
- Time of breakage: 900 seg


## 4. Results

- Maximum drafts



## 4. Results

- Sangüesa's drafts



## 4. Results

- Evolution in time of Sangüesa's drafts



## 5. Conclusions

- Critical situation for Sangüesa's village in case of break, necessity of an evacuation plan for the population
- Some phenomena are not taken into account since we are using Saint Venant 2D, but in the case of this study, for instance, turbulence can be neglected
- Related with the simulation, this software provides accurate results but the computational cost for large areas of study are extremly high
- The obtained results are in consonance with the developed studies some years ago by Dr. Antonio Casas (University of Zaragoza)


## THANK YOU FOR YOUR ATTENTION!

