STRUCTURAL OPTIMIZATION

COMMUNICATION SKILLS II PROF: ANTONIA LARESSE MSC IN NUMERICAL METHODS IN ENGINEERING AUTHOR: L. MILLET

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

MOTIVATION

OPTIMIZATION

Problem statement

Find x to minimize f(x) subject to $g(x) \le \theta$

f: objective function x: n-vector g: constraints, m-vector $g(x) \le 0 \implies \begin{cases} g_1 \le 0 \\ g_2 \le 0 \\ \vdots \\ g_m \le 0 \end{cases}$

CONSTRAINTS

The constraints *g* can either satisfy:

- An equality \rightarrow Lagrange multipliers strategy

minimize $f(x) \mid g(x) = 0 \quad \Leftrightarrow \quad \nabla f + \lambda^{\mathrm{T}} \nabla g = 0, \ g = 0.$

- An inequality -> Karush Kuhn Tucker conditions

Theorem: (Kuhn–Tucker) At an optimal point of the problem minimize f(x) subject to $g(x) \leq 0$, there exist Lagrange multipliers $\lambda \geq 0$ which satisfy $\nabla f + \lambda^T \nabla g = 0$ and $\lambda_i g_i = 0$ for i = 1,...,m.

OPTIMIZATION

A simple example:

				_	\sim —		-	
Parameter	Description		Value	_ /	$\langle \ $	Ī	н	
Е	Young's modulus		29,000 ksi	_ /				d
В	Half-distance betw	een supports	100 in.	nhìn ,		m.	-	Member Cross Sec
F _y	Yield stress of mat	erial	36 ksi					Member Cross ber
t	Wall thickness of t	ube	0.25 in.	I	2B			
Р	Applied load		100 k	_				
Item		Equation						
Second mom	ent of inertia (in. ⁴)	$I = \frac{\pi}{64} \left[(d + \frac{\pi}{64}) \right] \left[(d + \frac{\pi}{64$	$(d - t)^4 - (d - t)^4$	·) ⁴]	$\min_{f=2}^{f}$	$d(\mathbf{x}) \operatorname{ST}$	ubje +B2	ect to $\mathbf{g}(\mathbf{r})$
Member forc	e (k)	$F = \frac{P}{2} \frac{\sqrt{B^2 + H}}{H}$	$-H^2$		$g_1 = \frac{P}{2}$	$\frac{\sqrt{H^2 + B^2}}{H}$	$\frac{1}{d t \pi}$	$-F_y \leq 0$
Member stres	ss (ksi)	$\sigma = \frac{F}{A}$			$g_2 = \frac{P}{2}$	$\frac{\sqrt{H^2 + B^2}}{H}$	$\frac{1}{d t \pi}$	$\frac{\pi^2 E(d^2 + t^2)}{8(H^2 + P^2)}$
Buckling stre	ess (ksi)	$\sigma_{cr} = \frac{\pi^2 EI}{L^2}$	$\frac{1}{A}$		2	п	ain	o(n + n)

Р

OPTIMIZATION

A simple example:

LINEAR PROGRAMMING

- Simplex method

Find x to minimize $c^T x$ subject to Ax = b, $x \ge 0$

- Partition of the matrix A

$$Ax = b \implies A_{B} x_{B} + A_{N} x_{N} = b \implies x_{B} = A_{B}^{-1} (b - A_{N} x_{N})$$

$$c^{T} x = c_{B}^{T} x_{B} + c_{N}^{T} x_{N} = c_{B}^{T} A_{B}^{-1} (b - A_{N} x_{N}) + c_{N}^{T} x_{N}$$

$$= c_{B}^{T} A_{B}^{-1} b + (c_{N}^{T} - c_{B}^{T} A_{B}^{-1} A_{N}) x_{N}$$

- The simplex method starts with some set $x_N = 0$ and the coefficient of each $(x_N)_i$ is then examined in $c^T x = 0$
- If there is any negative coefficient, that variable increases to reduce f(x). The limit of increase is when some x_B is 0.
- By this process, there is one variable going into the basis and another one coming out

LINEAR PROGRAMMING

- Simplex method

 The simplex method begins at a starting vertex and moves along the edges of the polytope until it reaches the vertex of the optimal solution

LINEAR PROGRAMMING

- Interior point methods
 - Moves along the interior points of the feasible domain

minimize $c^T x$ subject to Ax = b and $x \ge 0$

- Looks for an incremental change dx such that

 $c^{T}x_{new} \leq c^{T}x_{o}$ and $Ax_{new} = b$

- It turns out that dx is taken to be -Pc, with the projection $P = I - A^{T} (AA^{T})^{-1} A$
- Then

$$c^{T}dx = -c^{T}Pc = -c^{T}P^{2}c = -||Pc|| \le 0$$

STRUCTURAL DESIGN

- Analysis tools, such as FE solvers
- Redesign
- Reanalyze

Clearly, the response of an elastic structure depends on its stiffness

LINEAR SYSTEMS VS OPTIMIZATION

It is frequently possible to replace a linear system by an optimization problem:

Given a set of linear equations

$$Ax = b$$

being the matrix A positive definite, an equivalent optimization problem is

minimize
$$\Phi(\mathbf{x}) = \frac{1}{2} \mathbf{x}^{\mathrm{T}} A \mathbf{x} - \mathbf{x}^{\mathrm{T}} b$$

SEQUENTIAL LINEAR PROGRAMMING

Linear programming, together with the incremental equations of structures, provides a robust format form which to solve problems of structural optimization

Typically, a structural optimization problem is stated as find K, the matrix of stiffnesses, to satisfy the equations of structures, together with some displacement or stress constraints and minimize the structural volume or cost

The incremental version of this problem starts with some given solution and looks for a dK that satisfies certain constraints(*)

→ Sequential linear programming problem

(*) Examples of possible constraints: Move limits, scaling, regions of trust displacement constraints, stress constraints,...

OPTIMIZATION REVIEW

Nonlinear programming roots: Seminal paper by Lucien Schmidt, 1960's

1970's: Difficulties even for small optimization problems

1990's: Discussions of mathematical programming methods for solving large systems.

Actually, we can solve a nonlinear programming problem with thousands of millions of rows and columns.

Multiple loading conditions

Primal Problem

$$\begin{array}{l} \textit{minimize } \phi = \frac{\sigma}{E} \sum_{i} L_{i} \max\{\left|F_{i}^{1}\right|, \left|F_{i}^{2}\right|\} \\ \textit{subject to } N^{T}F^{1} = P^{1} \textit{ and } N^{T}F^{2} = P^{2} \\ \textit{Dual Problem} \\ \textit{maximize } \psi = (P^{1})^{T} \delta^{1} + (P^{2})^{T} \delta^{2} \\ \textit{subject to } |N\delta^{1}| + |N\delta^{2}| \leq \frac{\sigma L}{E} \end{array}$$

Multicriterion optimization

minimize $f(x) = [f_1(x), f_2(x), \dots, f_{n_1}(x)]$ subject to $g(x) \le 0$

- A priori approach: The different targets are combined into a single one, turning the multi-objective problem into a single-objective one.
- Progressive approach: decision making and optimization are intertwined.
- A posteriori approach: a set of optimal candidate solutions (Pareto set) is obtained through the optimization process. Aftegr that, the most convenient solution is chosen.

Incremental equations when shape change is allowed

	Equations of structures	Incremental form
Equilibrium equations	$N^T F = P$	$N^{T} dF + dN^{T}F = 0$
Constitutive equations	$\mathbf{F} = \mathbf{K} \Delta$	$\mathrm{d} \mathbf{F} = \mathrm{d} \mathbf{K} \ \Delta + \mathbf{K} \ \mathrm{d} \Delta$
Node/member displacement	$\Delta = N \delta$	$d\Delta = N d\delta + dN \delta$

The shape optimization problem, after some algebra, turns out to be: $\int_{a}^{b} dE = dE = dE = dE$

find dF_i and dR_i to

minimize
$$\varphi = \sum_{i=1}^{n} \left[(\operatorname{sgn} F_i) L_i dF_i + (N^T | F |)_i dR_i \right]$$

subject to $K_G dR + N^T dF = 0$

Incremental equations when shape change is allowed

	Equations of structures	Incremental form
Equilibrium equations	$N^T F = P$	$N^{T} dF + dN^{T}F = 0$
Constitutive equations	$\mathbf{F} = \mathbf{K} \Delta$	$dF = dK \Delta + K d\Delta$
Node/member displacement	$\Delta = N \delta$	$d\Delta = N \ d\delta + dN \ \delta$

The shape optimization problem, after some algebra, turns out to be:

Generating new designs automatically

...an active area of research

AUTOMATED SHAPE OPTIMIZATION

GENETIC ALGORITHMS

- Heuristic algorithms
- They model the natural selection process of biology
 - Crossover: two or more previous candidates are compared and parts are taken from each
 - Mutation: there is the potential for change within an individual design

GENETIC ALGORITHMS

Evolution of the optimals while varying the objective function

GENETIC ALGORITHMS

Crossover and mutation given an initial set of shapes

CONCLUSIONS

We can think about mixing sequential linear programming together with the incremental equations of structures

→ a general structural optimization solver

- Parametric description of the geometry, and the restrictions (control points, splines, ...?)
- Finite Elements solver
- Constraints for the shape evolution
- Stress and strains constraints

→ Solve the optimization problem