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Abstract

In the context of computational fluid dynamics, solving problems that include
shocks numerically requires an extra effort in order to capture the shocks accurately
avoiding any numerical oscillations. To this end, shock-capturing techniques are used.
One of the famous techniques is the artificial viscosity method where extra diffusion
is added only near the shocks to stabilize the solution. Thus, two main ingredients of
this technique are the shock-sensor to determine the shock location and the amount
of diffusion added nearby. The main purpose of this work is: First, to demonstrate
the shock-capturing technique using artificial viscosity method. Second, to show a
comparison between two different shock-sensors. In this report, the analytical solution
of Sod’s shock tube problem is used to demonstrate the features detected by each of
the two shock-sensors.

Keywords: Euler equations, shock-capturing, artificial viscosity method.

1 Introduction

The compressible inviscid flow governed by Euler equations is a system of non-linear hy-
perbolic partial differential equations. In non-linear hyperbolic problems, discontinuities in
the solution can be generated, which is known as shock waves in the context of fluid flow,
even if the the initial conditions of the problem are continuous [1, Chap. 4]. It is known
that the presence of such discontinuities in the solution makes the numerical computation
more complicated especially when higher-order spatial discretization (k > 1) is utilised [2].
The reason behind this is the appearance of non-physical superior oscillations in the solu-
tion near the discontinuities. The introduction of shock-capturing techniques to eliminate
the arising oscillations and obtain a good structure of the shocks or discontinuities is then
a must.
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There are many approaches to resolve a shock, a straightforward approach is to reduce
the order of approximation to k = 1 near the shock and refine the mesh nearby [3], but
this approach is very computationally expensive because very fine meshes are needed.
Another approach is the limiting techniques [4]. The extension of limiting techniques
to discontinuous Galerkin (DG) methods has become very popular approach for shock-
capturing in DG, see for example [2, 5, 6]. Their main disadvantages are that the order of
approximation is reduced near the shock leading to degradation of accuracy, their extension
to multiple dimensions is not straightforward, they present some difficulties for implicit
time-marching schemes, and they are usually tied to specific element shapes and integration
quadratures.

There are many approaches that are not mentioned in this work, but the main idea of
using a shock-capturing technique is to compensate the reduction in diffusion resulting from
using higher-order discretization. In this report, a very simple technique using artificial
viscosity is exploited, this approach was first introduced by Von Neumann and Richtmyer
[7].

2 Artificial Viscosity Method

The governing partial differential equation for Euler flow is [1, Chap. 1]:

∂U

∂t
+ ∇·F = S (2.1)

where U = (ρ, ρvT , ρE)T is the vector of conservative variables, F is the advection flux
tensor, and S is a source vector. Note that ρ is the density, ρv is the momentum, and ρE
is the total energy. By adding artificial diffusion to Euler equations, the modified partial
differential equation is written as:

∂U

∂t
+ ∇·F −∇·G = S (2.2)

where G is the viscous flux tensor. In this work two definitions for G are used and they
are given as:

• Laplacian viscous flux:

G = ε∇U (2.3)

• Enthalpy-preserving viscous flux:

G = ε∇UH (2.4)
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where UH = (ρ, ρvT , ρH)T given that H is the enthalpy. Note that ε is the amount of
added viscosity or diffusion.

It is important to note that the diffusion term is added only near the shock and not
everywhere in the domain. Thus, it is crucial to detect the position of the shock which is
done using a shock-sensor or sometimes called a discontinuity-sensor.

2.1 Amount of Artificial Viscosity

Selecting the amount of viscosity to be added to the equation is not trivial. The goal is
to get a sharp structure of the shock buy yet resolvable, and only add viscosity near the
shock. To this end, the two main ingredients of the shock-capturing techniques are the
shock-sensor sε and the sensor dependent viscosity ε.

The viscosity ε should have the units of velocity times length, thus it is defined as:

ε = lscalevscalef(sε) (2.5)

where lscale and vscale are the length and velocity scales, respectively, and f(sε) is a dimen-
sionless switch function depending on the sensor sε. The velocity scale is defined following
the work in [8] as:

vscale =
√
v · v + c2 (2.6)

2.2 Shock-Sensor

As mentioned earlier, the shock-sensor is one of the two ingredients for any shock-capturing
technique. In this work, two different sensors are compared. The first sensor introduced
by Persson and Peraire in [9] is called Resolution Indicator sensor, and the second one
introduced by Barter and Darmofal in [10] is called Dilatation-Based sensor.

Persson-Peraire sensor/ Resolution indicator sensor

Following the work of Persson and Peraire in [9] and Casoni in [11], the shock-sensor is
defined as:

sε(ρ) =
ρTV −TPHV

−1ρ

ρTV −TV −1ρ
(2.7)

where ρ is the vector of nodal values of ρ, V is the Vandermonde matrix, see for example
[12,13], and PH is an orthonormal projection matrix onto the space of monomials of degree
k, see [11] for more details.
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The switch function f(sε) is defined as

f(sε) =


0 if log10 sε < s0 − κ
1

2

(
1 + sin

π(log10 sε − s0)
2κ

)
if s0 − κ < log10 sε < s0 + κ

1 if s0 + κ < log10 sε

(2.8)

where s0 = −6 log10 k and κ = 2 log10 k.

Barter and Darmofal showed the importance of having a continuous artificial viscosity
field, thus the length scale is smoothed lscale = h(x)/k, and the switch function f(sε) is
smoothed as well. Note that h(x) is a piece-wise linear reconstruction of the minimum
element size obtained by averaging the minimum size, he, of all the elements surrounding
a vertex.

The Resolution Indicator sensors is robust and very accurate for high-order elements.
It does not only deal with shock waves, but can also detect some other discontinuities,
such as expansion corners. However, the sensor is not smooth and its linearisation is quite
complicated [14].

Dilatation-Based sensor

Following the work of Barter and Darmofal in [10] and Moro in [8], the shock-sensor is
defined as:

sε = −kh
h(x)

k

∇·v
c∗

(2.9)

where kh ∈ [1, 2] is a correction factor, v is the velocity vector, and c∗ is the critical speed
of sound defined as:

c∗ =

√
γRT0

2

γ + 1
(2.10)

The length scale is defined as lscale = khh(x)/k and the switch function f(sε) is defined
as

f(sε) =
log(1 + eα(sε−β))

α
(2.11)

where α = 104 and β = 0.01.

The Dilatation-Based sensor is robust, smooth, and defined pointwise. Its implementa-
tion is simple, and can be easily linearised to solve the non-linear problem using a Newton-
Raphson algorithm. However, being designed to deal only with shocks, other methods are
needed when the problems include other strong discontinuities, such as in an expansion
corner [14].
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3 Understanding Shock-Capturing by an Example

In this section, a comparison between the two discontinuity sensors, Persson-Peraire and
Dilatation-Based, is done to show the flow features captured by each sensor. Once a
discontinuity is detected, artificial viscosity is added nearby to capture a good structure
of this discontinuity. Artificial viscosity is added near discontinuities because higher-order
polynomial interpolation of discontinuous solution results in superior numerical oscillations.
A detailed study is done for Sod’s shock tube problem to further understand the previous
statements.

3.1 Sod’s Shock Tube Problem Analysis

Sod’s shock tube is a classical problem with known exact solution used to validate numerical
schemes developed for solving Euler equations. It is an interesting problem because it has
three important ingredients that might exist in complicated fluid flow problems, the three
ingredients are: shock wave, contact discontinuity and expansion fan (rarefaction wave).
Those three waves are steadily moving waves.

Figure 1: Shock tube problem, initial condition (top) and after diaphragm failure (bottom)

Consider a domain Ω = [0, 1] × [0, 0.4], of slip-wall boundaries. Initially a diaphragm
placed at xD = 0.5 is separating two fluids, the fluid on left is a stationary high pressure
and density (p1 = 1, ρ1 = 1) fluid and the one on right is a stationary low pressure and
density (p2 = 1/3, ρ2 = 1/3) fluid. At time t = 0, the diaphragm fails and the three waves
start moving as seen in Figure 1, which results in five sections where the analytical solution
is already known up to the point in time when either the shock wave or the rarefaction
wave is reflected by the respective ends of the shock tube [13].
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At time t = 0.1, the positions of the three waves are plotted on a coarse mesh as shown
in Figure 2, where the blue and red lines are the expansion fan head and tail, respectively,
the yellow line represents the contact discontinuity while the purple line is the position of
the shock wave. It should be noted that the analytical solution at the head and tail of the
expansion fan is weakly discontinuous (continuous variables - discontinuous derivatives)
and it is strongly discontinuous (discontinuous variables) at the contact and shock waves.

Figure 2: The positions of the three waves at time t = 0.1 plotted on top of a coarse mesh

Using elements of order p = 3, the analytical solution is computed at all the nodes, and
the solution within elements is interpolated using the standard finite element polynomial
approximation. As mentioned earlier, approximating discontinuous solutions using higher-
order polynomials results in numerical oscillations near the discontinuities, which can be
clearly seen, for instance, in the interpolated solution of density and velocity shown in
Figure 3. Now, it is clearly understood the reason why a shock capturing technique is
needed for higher-order elements.

The shock capturing technique is composed of two main ingredients, a discontinuity
sensor and addition of artificial viscosity. Figure 4 shows the features detected by each
of the two discontinuity sensors, Persson-Peraire and Dilatation-Based, when applied to
the solution shown in Figure 3, it also shows the amount of added artificial viscosity in
terms of the maximum per element, i.e. the viscosity is computed at all the Gauss points
of an element and only the maximum value among them is shown. It is observed that
Persson-Peraire sensor detects both shock and contact discontinuity because of the high
density gradient nearby, it doesn’t detect the expansion fan because the density is more
smooth nearby. More viscosity is added near the shock than near the contact because
of the higher density gradient near the shock. On the other hand, the Dilatation-Based
sensor detects both shock and expansion fan, it adds much more artificial viscosity to the
shock compared to the expansion fan, the reason is the higher divergence of velocity near
the shock, it doesn’t detect the contact discontinuity because the velocity is divergence
free at the contact. It is also observed that Dilatation-Based sensor leads to addition of
more artificial viscosity to the shock compared to the case of Persson-Peraire, more than
ten times the amount of viscosity. Furthermore, in case of Dilatation-Based, the artificial
viscosity is added only to the elements with discontinuities in the solution, while in the
case of Persson-Peraire, the artificial viscosity is added also to the adjacent elements.
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(a) Density (b) Velocity

Figure 3: The cubic polynomial interpolation of the analytical nodal values of density and
velocity at time t = 0.1 in the coarse mesh

(a) Case: Persson-Peraire - maximum value: 2.049e-03

(b) Case: Dilatation-Based - maximum value: 2.381e-02

Figure 4: The maximum added artificial viscosity per element in the case of using Persson-
Peraire and Dilatation-Based for the coarse mesh and elements of order p = 3

7



Another analysis is performed to understand the effect of h-refinement and p-refinement
on the discontinuity sensing and the addition of artificial viscosity. First, h-refinement is
considered where fine mesh shown in Figure 5 is used for the analysis. Similar to what was
done for the coarse mesh, the polynomial interpolation, of the analytical nodal values of
the solution, within elements is shown in Figure 6 where the numerical oscillations near the
discontinuities is also observed. By refining the mesh, it is observed in Figure 7 that the
amount of added viscosity is slightly increased in the case of Persson-Peraire, the reason
could be the increase in the density gradient near the discontinuities. On the other hand,
in the case of Dilatation-Based, the amount of added viscosity is reduced nearly four times
compared to the case of coarse mesh, the reason could be the reduction in the length scale
used to compute the amount of viscosity. Note that in Figure 7b, the amount of added
viscosity at the expansion fan is very small, order (1e-04) near the head and (1e-07) near
the tail.

Figure 5: The positions of the three waves at time t = 0.1 plotted on top of a fine mesh

(a) Density (b) Velocity

Figure 6: The cubic polynomial interpolation of the analytical nodal values of density and
velocity at time t = 0.1 in the fine mesh
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(a) Case: Persson-Peraire - maximum value: 2.600e-03

(b) Case: Dilatation-Based - maximum value: 5.779e-03

Figure 7: The maximum added artificial viscosity per element in the case of using Persson-
Peraire and Dilatation-Based for the fine mesh and elements of order p = 3

Second, a p-refinement is considered, where the order of polynomial approximation is
increased from p = 3 to p = 4. The analysis is done using the fine mesh shown earlier in
Figure 5. It is observed in Figure 9 that the amount of added viscosity is slightly increased
in the case of Persson-Peraire compared to the lower-order, the reason could be the higher
numerical oscillations in the density appearing in 8a compared to 6a. On the other hand,
in the case of Dilatation-Based, the amount of added viscosity is slightly reduced compared
to the lower-order, the reason could be the reduction in the length scale used to compute
the amount of viscosity, another reason could be the lower divergence of velocity across
the shock as seen in 8b where the velocity changes from nearly 0.5 to 0, while for the
lower-order, velocity changes from nearly 0.53 to 0 as seen in 6b. Note that in Figure 9b,
the amount of added viscosity at the expansion fan is very small, order (1e-04) near the
head and (1e-05) near the tail.
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(a) Density (b) Velocity

Figure 8: The quartic polynomial interpolation of the analytical nodal values of density
and velocity at time t = 0.1 in the fine mesh

(a) Case: Persson-Peraire - maximum value: 3.213e-03

(b) Case: Dilatation-Based - maximum value: 5.270e-03

Figure 9: The maximum added artificial viscosity per element in the case of using Persson-
Peraire and Dilatation-Based for the fine mesh and elements of order p = 4
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4 Conclusions

As a conclusion of the work presented, the shock-capturing technique using artificial viscos-
ity method is discussed. Two different shock-sensors were exploited, and a simple method
to compute the amount of added viscosity is explained. A brief study is done on the analyt-
ical solution of Sod’s tube problem to compare the two sensors being studied. Furthermore,
the effect of h-refinement and p-refinement on the amount of added viscosity was shown. It
is concluded that the Resolution Indocator sensor can work for any kind of discontinuity in
the solution, i.e. shocks, expansion fans, and contact discontinuities. On the other hand,
the Dilatation-Based sensor works only for shocks but not other types of strong disconti-
nuities such as the contact discontinuity. Next, It is worth exploring the effect of using this
approach on a more complex problems such as the transonic and supersonic flows around
aerofoils.
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