
Proper Generalised Decomposition for Tensor Separation and

Compression

Rafel Perelló i Ribas

December 2019

Abstract

Proper Generalized Decomposition (PGD) is a method used to solve in an efficient manner
high-dimensional parametric Partial Differential Equations (PDEs). This computational tool
provides an explicit solution in terms of the parameters of the PDE. In this paper we present a
method to obtain separated representations of such solutions based on Least Squares projection.

1 Introduction

Proper Generalised Decomposition is used as a method to reduce the Degrees of Freedom (DoF)
of high dimensional problems. Suppose that the spatial domain of interest is Ω ⊂ Rnsd and the
parametric domain of interest is P = I1 × I2 × ...× Inp ⊂ Rnp . The domain of the parametric PDE
is D = Ω× P.

In order to solve the problem in the classical way a discretisation of nsd + np dimensions is
required. Once the spatial domain and every parametric dimension is discretized, the number of
total DoF is nDoF = nDoF (Ω) ·

∏np

i=1 nDoF (Ii). This results in a huge number of DoF, too large for
computational purposes. For this reason, the separable approximation is used.

Suppose that the solution is required to be in the following space u ∈ V(D) = VΩ(Ω)⊗VI1(I1)⊗
VI2(I2) ⊗ ... ⊗ VInp

(Inp) where Vi denotes an arbitrary Hilbert space. We restrict ourselves to the
study of the discretised problem so we shall assume that all Hilbert spaces are finite dimensional.
Now a subset of V is defined as the set of rank-one functions:

VR1(D) =
{
u(x,µ) = uΩ(x) · uI1(µ1) · uI2(µ2) · ... · uInp

(µnp
) : uΩ ∈ V(Ω), uIi ∈ VIi(Ii)

}
, (1)

where µ = (µ1, µ2, ..., µnp).
Note that VR1 is not a vector space. The PGD approximation of the solution is a sum of functions

in VR1:

uPGD ∈ VPGDM (D) =
{
u =

M∑
i=1

uR1
i ∈ V(D) : uR1

i ∈ VR1(D)
}
, (2)

where M ∈ Z+ denotes the number of modes. The set VPGDM is able to approximate the exact
solution up to the desired accuracy for large enough M . This is due to the property that states that
any function in VΩ(Ω)⊗VI1(I1)⊗VI2(I2)⊗ ...⊗VInp

(Inp
) can be written as the limit of a convergent

sequence (um)m≥1 where um ∈ VPGDm (D) [1].

1

With this approach the number of DoF of the discretisation of VR1 is nR1
DoF = nDoF (Ω) +∑np

i=1 nDoF (Ii). The number of DoF in the PGD solution is nPGDDoF = M · nR1
DoF which is orders

of magnitude lower than nDoF .
We have presented the capabilities of the PGD approach. We shall explain the methodology used

to obtain separated solutions from the function u ∈ V. Two algorithms are presented depending
on how the function is given. If the function is discretised in the classical way, i.e. u ∈ RDoF (Ω) ⊗
RDoF (I1) ⊗ RDoF (I2) ⊗ ...⊗ RDoF (Inp) the method is called Tensor Separation. Alternatively, if the
provided solution is already in separated format, i.e. u ∈ VPGDM for some M ∈ Z+ the method is
called Tensor Compression. This latter requires much less computational effort as the number of
DoF is much lower. In this case what is expected is to reduce the number of modes used for the
representation of the solution.

Both methods are a posteriori reduction techniques as they require first to solve the parametric
PDE. If the classical FEM is used to solve the parametric problem, the solution obtained is not
in separable format and the Tensor Separation method can be used to obtain a separated approx-
imation. Alternatively, if some a priori method is used to solve the PDE, then the solution is in
separable format. However, these methods are far from being optimal in the sense that the solutions
they provide can be represented with much less modes with a relatively low loss of accuracy. In
this case, the Tensor Compression can be used to reduce the number of modes used to represent the
solution.

Although a priori PGD algorithms are much more computationally efficient to solve parametric
PDEs they are out of the scope of this paper. The interested reader may consult [2, 4].

2 Methodology

In this section is presented how to obtain PGD approximations of an already computed function
u ∈ V. This methodology is the used for Tensor Separation and Tensor Compression (remind that
VPGDM ⊂ V). However, they differ in the computational implementation.

Let first define the Least Squares projection from V to VR1 as:

P : V →VR1

u→ arg min
uR1∈VR1

∥∥u− uR1
∥∥ (3)

The first mode approximation is defined as u1 = P(u). As the approximation is not, in general,
exact the residual of the first mode is defined as r1 = u − u1. To improve the approximation the
second separated mode is computed as u2 = P(r1) and the residual is r2 = r1−u2. Note that u2 6= 0
in general as VR1 is not a vector space. By induction, the separation is written as:

r0 = u,

ui = P(ri−1), (4)

ri = ri−1 − ui.

The approximated solution is then uPGD =
∑
i ui. Modes are added until some convergence re-

quirements are met.
For convenience, in the PGD representation, all vectors are normalized in their corresponding

dimension and each mode is scaled up by an scalar σm representing the norm of the m-th mode:

uPGDM ∈ {u(x,µ) =

M∑
m=1

σmumΩ (x)

np∏
i=1

umi (µi) : ‖umi ‖Vi = 1, umi ∈ VR1
i (D)}. (5)

2

2.1 Tensor Separation

Now the implementation of an algorithm that computes the PGD tensor separation of a given full
tensor is presented. For a more extended explanation of the procedure, the reader can remit to [3],
for instance. In both methods of Tensor Separation and Compression all dimensions are treated
equally (no distinction is made between spatial and parametric dimensions).

Let F be the tensor of order d representing u. The tensor is separated as:

F PGD =

M∑
m=1

σm

d⊗
j=1

fmj , (6)

where

σm =

d∏
j=1

∥∥∥f̃mj ∥∥∥ , (7)

fmj =
1∥∥∥f̃mj ∥∥∥ f̃

m

j . (8)

The PGD representation of F is obtained using (4). To compute each projection P(rm−1) a
nonlinear minimisation problem is computed. To find such projection, a minimisation problem is
stated as the minimisation of the nonlinear functional J (·) defined as:

J (f̃
m

1 , ..., f̃
m

d) =

∥∥∥∥∥∥
(
F −

m−1∑
M̃=1

d⊗
j=1

f̃
M̃

j

)
−

d⊗
j=1

f̃
m

j

∥∥∥∥∥∥
2

. (9)

The method used to minimise J is an alternated directions scheme. This consists in minimise J
as a function of only one dimensional vector and then alternate successively the dimension in which
J is minimised until convergence is achieved. After performing some algebraic manipulations it can
be shown that J (f̃

m

γ) can be expressed as

J (f̃
m

γ) = ‖F ‖2 + α(f̃
m

γ , f̃
m

γ)γ − 2(f̃
m

γ , g)γ , (10)

where

α :=

d∏
j 6=γ

(f̃
m

j , f̃
m

j)j , (11)

g := F ...

d⊗
j 6=γ

f̃
m

j − g̃, (12)

g̃ =

m−1∑
M̃=1

σM̃

[d∏
j 6=γ

(fM̃j ,f
m
j)j

]
fM̃γ . (13)

Here (·, ·)j denotes the inner product in the j dimension and the symbol ... indicates tensor con-
traction in all possible indices with respect to the defined inner product.

The one-dimensional minimisation problem is solved as

f̃
m

γ =
1

α
g (14)

3

The alternate direction scheme is repeated until convergence is achieved. Then the directional
vectors are normalized as stated in (8). With this a new mode has been added to the separated
solution. New modes are be added until some stopping criteria are met. One very efficient stop
criterion is the relation of the norm of the last computed mode over the norm of the first mode
σM

σ1 . When this quantity is less than a small tolerance it is assumed than the residual of the PGD
approximation is small enough and convergence is achieved.

The pseudocode summarizing the method can be found in Appendix A.

2.2 Tensor Compression

Tensor Compression algorithm differs only in the type of the input data. In this case, the input data
is also a tensor of the same dimensions but written in separated form:

Φ =

L∑
l=1

σl · φl1 ⊗ φ
l
2 ⊗ ...⊗ φ

l
d (15)

The only changes in the algorithm are in the computation of g. More precisely, in the contraction
Φ...

⊗d
j 6=γ f̃

m

j . In this case

Φ...

d⊗
j 6=γ

f̃
m

j =

L∑
l=1

σl

[
d∏
j 6=γ

(φlj ,f
m
j)j

]
φlγ (16)

The algorithm to compute the compression is the same than the used for Tensor Separation.

3 Numerical example

To illustrate the methods presented an example is given. It is taken from [3]. It consists in separating
a 7-dimensional tensor. The tensor is expressed as the sum of 6 rank-one modes. However, as the
method is not optimal for dimensions higher than 2 it is expected that several modes are needed to
recover accurately the solution. Each dimension is discretised with 10 equally spaced points along
the interval (0, 1). That means that the tensor has 107 real coefficients. The functions defining the
tensor are:

φjk(xk) =ajk exp

(
−(xk − bjk)2

cjk

)
,

φ6
k(xk) = sin(πxk),

for j = 1, ..., 5 and k = 1, ..., 7. Here j denotes the mode number and k the dimension number.
Coefficients a, b and c are given in Appendix B.

The results of the separation of the tensor show that to obtain an approximation with accuracy
of the order of 10−5, 100 modes are needed (Fig. 1). This results in 100×7×10 = 7 ·104 coefficients
used to store the solution.

For the sake of completeness, the obtained separated tensor has been compressed using the Tensor
Compression algorithm. However, as expected, it does not provide any significant improvement of
the solution as the methodology used for Tensor Compression is the same than the used in Tensor
Separation.

4

Figure 1: Normalized modal amplitudes (σm\σ1)

4 Conclusions

The PGD method based on Least Squares projection is a powerful computational tool to perform
high dimensional tensor separation. It may be used to reduce the storage needed to obtain a
representation of a high dimensional tensor enabling to perform complex computations with low
computational resources or even to use such representations in real time applications.

Although it solves the problem of representing the solution of high dimensional parametric PDEs
it does not give a solution on how to compute this solutions with low computational effort. The
interested reader may consult the references provided about this subject.

5

5 Appendix A

Here it is presented the pseudocode summarising the algorithm of Tensor Separation and Compres-
sion.

Data: Tensor of order d to be approximated: Φ
Result: PGD approximation: F PGD =

∑M
m=1 σmf

m
1 ⊗ f

m
2 ⊗ ...⊗ f

m
d

Initialize:mode counter m = 1, iteration counter iMode = 1

while iMode < maxModes and σm > tolModes · σ1 do

Initialize: Assign values to foldj , for j = 1, 2, ..., d such that
∥∥∥foldj ∥∥∥ = 1, σold = 1,

iteration counter itr = 1

while itr < maxIter and (errorσ > tolIter s or errorf > tolIter f) do
σnew = σold

fnewj = foldj , for j = 1, 2, ..., d

for iD = 1, 2, ..., d do

α =
∏d

j=1
j 6=iD

∥∥fnewj

∥∥2

g := Φ...
⊗d

j 6=iD f
new
j − g̃

fnewiD = 1
αg

end

σnew =
∏d
j=1

∥∥fnewj

∥∥
fnewj =

fnew
j

‖fnew
j ‖ , for j = 1, 2, ..., d

errorσ = |σnew−σold|
|σnew|

errorf =
∏d
j=1

∥∥∥fnewj − fm
old

j

∥∥∥2

σold = σnew

foldj = fnewj , for j = 1, 2, ..., d

end

Store the values σnew and fnewj

end
Algorithm 1: Tensor separation pseudocode

6

6 Appendix B

The tensor used for the numerical example is constructed using the coefficients ajk, bjk and cjk from
the matrices A, B and C shown below:

A =


1 −1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 −1 1 1 1 1 1



B =


0.5 0.5 0.5 0.5 0.5 0.5 0.5
0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.6 0.9 0.6 0.6 0.6 0.6 0.6
0.1 0.75 0.1 0.1 0.1 0.1 0.1
0.8 0.2 0.8 0.8 0.8 0.8 0.8



C =


0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.02 0.01 0.02 0.02 0.02 0.02
0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.01 0.01 0.01 0.01 0.01 0.01
0.01 0.02 0.01 0.02 0.02 0.02 0.02


References

[1] R.A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer (2002)

[2] A. Nouy, A priori model reduction through Proper Generalized Decomposition for solving time-
dependent partial differential equations, Comput. Methids Appl. Mech. Engrg (2010) vol.199, pp.
1603-1626.

[3] P. Dı́ez et al., Algebraic PGD for tensor separation and compression: An algorithmic approach,
C. R. Mécanique (2018) vol.346, pp. 501-514.

[4] A. Sibileau, et al., Explicit parametric solutions of lattice structures with Proper Generalized
Decomposition (PGD): Applications to the design of 3D-printed architectured materials, Compu-
tational Mechanics (2018) vol.62, pp. 871-891.

7

