New method for fast predictions of Additive Manufacturing processes

Tomás Varona Poncela

International Centre for Numerical Methods in Engineering

tomasvarona91@hotmail.com

November 10, 2015

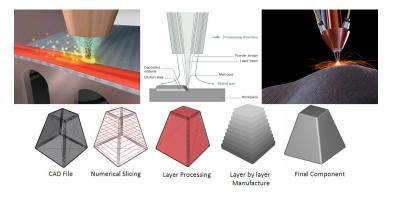
Tomás Varona Poncela (CIMNE)

Fast predictions of AM processes

MOTIVATION OF ADDITIVE MANUFACTURING

Tomás Varona Poncela (CIMNE)

Fast predictions of AM processes


-November 10, 2015 2 / 18

< 🗇 🕨 < 🖃 🕨

3

CONCEPT OF AM

Additive manufacturing (AM), also known as 3D printing or rapid Prototyping, is a relatively novel technique to make parts, layer upon layer, directly from 3D model data.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

METAL POWDER TECHNOLOGY

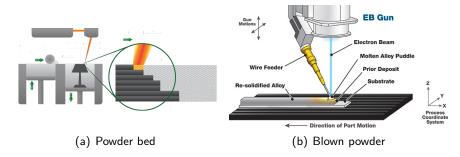
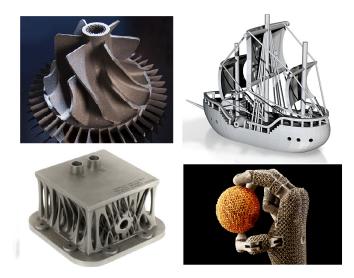


Figure: Metal powder technology

Tomás Varona Poncela (CIMNE)


Fast predictions of AM processes

November 10, 2015 4 / 18

3

(人間) トイヨト イヨト

EXAMPLES OF AM PRODUCTS

Tomás Varona Poncela (CIMNE)

Fast predictions of AM processes

- 34

・ロン ・四 ・ ・ ヨン ・ ヨン

- Freedom of design (complex shapes, inner cavities, thin walls...)
- Reduce energy and material use (no mould...)
- Rapid cooling (finer grain size)
- Large number of products can be created
- No assembly required

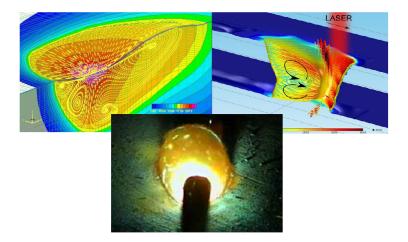
3

< 回 ト < 三 ト < 三 ト

OBJECTIVE AND BACKGROUND

Tomás Varona Poncela (CIMNE)

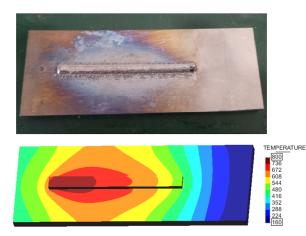
Fast predictions of AM processes


November 10, 2015 7 / 18

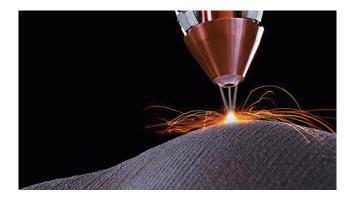
イロト イヨト イヨト イヨト

э

HIGH-FIDELITY NUMERICAL SIMULATION OF AM


A current code developed by Michele Chiumenti, among others researchers, performs an accurate simulation of AM processes.

Fast predictions of AM processes


HIGH-FIDELITY NUMERICAL SIMULATION OF AM

In practice, this simulation requires a high computational cost which leads to long computation times. It is difficult to apply it directly to industry.

OBJECTIVE

Reducing the computational cost to make it feasible for industrial applications.

Tomás Varona Poncela (CIMNE)

Fast predictions of AM processes

November 10, 2015

10 / 18

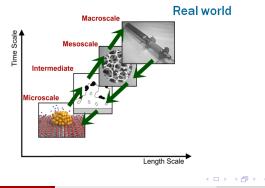
▲ 同 ▶ → 三 ▶

METHODOLOGY

Tomás Varona Poncela (CIMNE)

Fast predictions of AM processes

November 10, 2015 11 / 18


3

・ロン ・四 ・ ・ ヨン ・ ヨン

METHOD FEATURES

The main features of the method are:

- Multi-scale approach based on FEM
- Calibration of heat source
- Analysis of scanning strategies
- Generation of the so-called "mechanical layer equivalent" (MLS)

$\mathsf{Microscopic}\ \mathsf{scale} \to \mathsf{Heat}\ \mathsf{source}\ \mathsf{model}$

For the calibration of the heat input, a thermal Finite Element Analysis (FEA) is used to determine:

- Parameters of heat source
- Energy absorption coefficient η

For the laser spot a Goldak heat source is used.

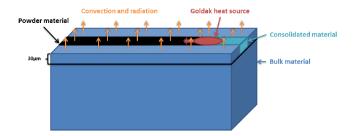


Figure: Boundary conditions of heat source simulation model

Tomás Varona Poncela (CIMNE)

Fast predictions of AM processes

November 10, 2015

13 / 18

$\mathsf{Mesoscopic}\ \mathsf{scale}\ \rightarrow\ \mathsf{Hatching}\ \mathsf{model}$

For consideration of the trajectory of the laser spot, a thermo-mechanical elasto-plastic simulation model is developed.

The energy absorption coefficient η is used for estimating the heat input which is distributed within a cubic element.

In this stage of the simulation, the so-called inherent strains of the hatching model are computed.

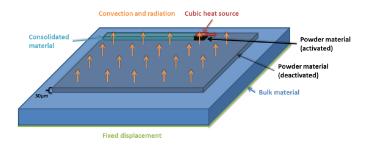


Figure: Boundary conditions of the hatching simulation model

Tomás Varona Poncela (CIMNE)

Fast predictions of AM processes

November 10, 2015 14 / 18

Macroscopic scale \rightarrow Layer model

- Distortion of AM parts tends to be a macroscopic phenomenon which depends on hatching strategy and geometry
- Fast solution mechanical problem with inherent strain method

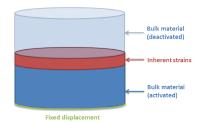


Figure: Boundary conditions of the layer simulation model

Tomás Varona Poncela (CIMNE)

Fast predictions of AM processes

November 10, 2015

15 / 18

CONCLUSION

Tomás Varona Poncela (CIMNE)

Fast predictions of AM processes

November 10, 2015 16 / 18

3

イロト イヨト イヨト イヨト

The strong points of this new fast method are:

- Numerical fast prediction of complex AM parts
- Multi-scale approach makes possible the consideration of scan strategies and complex material behaviour
- Inherent strain approach enables the reduction from a complex thermo-mechanical problem to a simpler structural-mechanical one
- Calculation time can be reduced in two or more orders of magnitude
- Opening the way for the application of this method in real industrial praxis

- 3

・ 同 ト ・ ヨ ト ・ ヨ ト

THANK YOU FOR YOUR ATTENTION!

Tomás Varona Poncela (CIMNE)

Fast predictions of AM processes

November 10, 2015 18 / 18

3

(日) (同) (三) (三)