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Abstract

Reduced-order models (ROM) are a numerical technique to reduce the computa-

tional cost by finding a basis of functions that allows the representation of new solutions

as a combination of them. In this paper two methods are presented and discussed: the

Proper Orthogonal Decomposition (POD),which is an a posteriori technique because it

is needed to solve at least once the problem with the complete basis before reducing it,

and the Proper Generalized Decomposition (PGD), which is an a priori ROM because

the basis is constructed as an enrichment process. Therefore PGD can also be used as

a solver for multi-variable problems when it is not affordable to get directly a solution

of the full problem.
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Introduction

When solving a model problem in the context of numerical simulation we sough for a dis-

crete solution in a space of approximate functions associated to the mesh. This space have

as many functions as nodes have the mesh (M ). This may imply for instance for transient
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problems, to compute M values at each time step and for non-linear problems, a system of

equations of size M. For large problems this may lead to computational expensive solutions.

However the dimension of the space of functions to sough for the solution in many cases

is too large and actually the solution may live in a subspace of it. So it makes sense to look

for a reduced-order model solution which will be substantially cheaper to compute. The

construction of the ROM will imply a computationally expensive process which will be done

just one time but, further solutions constructed with the ROM solution will be substantially

cheaper to compute. The ROM based solutions due to its cheap computationally cost are

specially likely to be used in real time simulations.

In this article we outline two reduced-order models: the Proper Orthogonal Decom-

position (POD) and the Proper Generalised Decomposition (PGD). We expose the main

differences of them and we also give some advice of which cases it is better one or another.

Proper Orthogonal Decomposition (POD)

As an illustrative example of a two variables function, assume a variable of interest depend-

ing both on space and time u(x, t) and assume that the discrete solution is known at nodal

level in each time step. This is assume the solution is stored in a matrix of M×P dimension

being M the number of nodes of the spatial discretization and P the number of time steps.

Therefore the solution for all nodes at time n (un) corresponds to the n-th column of the

matrix.

The idea of POD is to find the most relevant or characteristic structure φ(X) among

um such that the solution at any time step could be built combining these characteristic
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structures. To do so we have to maximise the scalar quantity α (1)

α =

∑p
m=1

[∑M
i=1 φ(xi)u

m(xi)
]2

∑M
i=1 (φ(xi))

2
(1)

This maximisation problem requires solving the eigenvalue problem (2)

cφ = αφ where c =
P∑

m=1

um · (um)T (2)

with c being a symmetric and definite positive operator.

Building of the ROM from POD

The construction of the ROM solution is done selecting the eigenvectors φi associated to the

N largest eigenvalues solution of (2). The weight of the eigenvalues generally decrease expo-

nentially, so N normally is taken as the number of eigenevalues within a margin with respect

to the largest one (e.g. 10−8). In general for a time discretization with enough intervals, N

is much lower than M so the reduction is justified.

Then the construction of a new solution based on the ROM is done combining the ”basis”

functions φi. For example in an explicit time discretization, the new solution is computed

from the ROM basis as (3):

um+1 ≈
N∑
i=1

φiζ
m+1
i = Bζm+1 (3)

where ζm+1 are the coefficients of the interpolation to be determined and B is the matrix of

N basis functions φi by columns.

So the coefficients ζm+1 are found solving an algebraic system of equations of size N

3



instead of M , what implies an important reduction in finding the a posteriori solution. This

approach is likely to be used in finding the solution at new time steps in the base of a small

ROM computed only for few time intervals. Another case where POD is useful is in finding

new solutions of a similar problem with slight changes in parameters, but the method can

exhibit lack of robustness.

Proper Generalized Decomposition (PGD)

Consider a general problem depending on D variables of any kind: space, time, material

parameters, geometry, boundary conditions... The space where to seek for a solution is the

cross product of each space separetely, that is (x1, . . . , xD) ∈ Ω1 × · · · × ΩD.

If we aimed to find a ”general” solution in the form of POD that would means storing

in a D-th order tensor the solution for all possible combinations between all variables in

what the problem depends. It is clear that both the combinations and the storing capacity

required to solve a problem such that grows exponentially and we will run out of computa-

tional resources very quickly.

The alternative that PGD offers to that problem is the construction of a separable ap-

proximate solution of the form

u(x1, . . . , xD) ≈ uN(x1, . . . , xD) =
N∑
i=1

F 1
i (x1)× · · · × FD

i (xD) (4)

where N is the number of terms of the representation and F j
i (xj) is a function only depend-

ing on xj, both of them known in advance of the construction of the PGD solution. The

reduction of the space of possible solutions is significant because the original problem with

a mesh of M nodes was of dimension MD while the PGD solution is of size N ×M ×D.
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Building of the ROM from PGD

The construction of the PDG solution is done with successive enrichment of the already

computed solution. This means that for a solution un the enrichment n+1 will be constructed

as

un+1(x1, . . . , xD) = un(x1, . . . , xD) + F 1
n+1(x1)× · · · × FD

n+1(xD) (5)

what means that at each enrichment only D terms have to be computed. An interesting

property of this construction is that we can improve the representation if this is not good

enough adding more terms without having to start again.

Numerical examples done using PGD show that the number of terms needed to represent

the solution doesn’t depend on the problem size D but on the separable character of the

exact solution to represent. This is a good new because we can consider as much variables as

required in the problem without worrying that this would affect the computation of the PGD

solution. In addition numerical examples show that as the number of terms (N) increases

the solution converges to the exact solution of the complete tensor product approximation.

In particular in a case where the solution wasn’t separable, the solution would be enriched

until considering all the terms of the functional space (MD).

Comparison between POD and PGD

The main difference between POD and PGD is that to get the basis for the ROM in POD

it is needed to compute at least once the solution of the problem with the complete approx-

imation basis. Therefore we talk of POD as an a posteriori ROM. On the other hand to get

a ROM solution for the PGD method we don’t need to solve the problem with the complete

basis but enrich the basis of the PGD from the previous solution until we get the desired

precision. So in this case we talk of an a priori approach.
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Regarding the sources of errors, when we solve a similar problem in POD with the basis

functions of a complete basis approximation the number of degrees of freedom scales with the

number of functions in the reduced order basis. Therefore there is a difficulty of capturing

all the details of a different model with the reduced order basis and an inherent error will

occur. However in PGD the sources of error arise from the spatial discretization and also in

the number of terms taken to represent the new solution. So with a fine enough mesh and

with enough terms of the basis in a separable problem we will converge to the solution.

About the reduction in computational resources, POD requires to solve once the model

with the complete basis functions, so for problems involving many variables (in practice more

than two) it is untreatable to solve the full problem to then get the ROM. It is still useful

despite this to solve similar problems in a fast and quite accurate manner. On its site, PGD

can be used to solve problems with lots of variables that in many cases cannot be solved at

once. So apart of a ROM to get a basis of functions to construct new solutions in a fast

way, it can also be seen as an efficient solver to get solutions of multi-variable problems that

couldn’t be solved in a direct way because of the high number of degrees of freedom.

Conclusions

Reduced-order models are a useful and powerful tool to reduce the computational cost of

constructing new solutions of a model problem. The computation of the basis functions

that allow to build the ROM solution is a computational costly phase but allows the fast

construction of new similar solutions in a much faster way.

While POD is an a posteriori ROM because it is needed to compute once the solution

with the complete basis, PGD is an a priori ROM because the new approximation is obtained

as an enrichment of the previous ones. There PGD can also viewed as a solver to obtain
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soluions specially in case of multi-variable problems which are unaffordable to solve at once

a part of a reduction technique.
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