
Fast algorithm for contact detection based on classification by cubes.

M. Puigpinos

Keywords: contact detection, contact mechanics, finite elements, contact problems.

In this article a low computational cost algorithm for contact detection is proposed. The motivation of this work is to reduce
drastically the computational time of computing the closest projection in a pair of contact. Comparing the proposed method
with the direct method (compare each node of the master with all the elements of the slave) the time is reduced in five orders
of magnitude for big meshes (nodes of Master plus nodes of Slave more than one million). Another interesting result is that
in all tested cases, the computational time does not exceed the one hundred of seconds. Taking into account these results, the
implementation of this method in a finite element code will result in a faster computation or in an increase of precision since the
contact pair could be computed more frequently.

1 Introduction

In the numerical resolution of mechanical problems is really
important to compute contacts, due to they are present in mul-
tiple practical aplications. In the computation of contacts, two
stages can be differentiated: the search of contact pairs and the
reaction forces computation. This work is focused on the first
stage.

The search of contact pairs could seem at first glance an
easy task. The appearence of several articles about contact de-
tection, shows that there is a lot of research about it around the
computational mechanics community. General algorithms for
contact detection such Oct-tree, were developed by the video
games industry and are useful to detect contact. Most of the
articles, study algorithms for contact detection related with
particle methods (DEM), since this topic is one of the weak
points of DEM based methods [1],[2].

When solving a contact problem, there are two main con-
cepts that must be defined: the master is the node of the geom-
etry that produces the repulsive force. The slave is the surface
that contacts the node of the master. Therefore, the statment
of the problem to solve can be written as: find the node i of
the master, that has the closest projection to the surface j of
the slave. A direct and easy method is to compare all the sur-
faces of the slave to each node of the master and compute the
projections for each case and select the minimum. In a fi-
nite element mesh, the order of operations will depend on the
number of nodes of the master and the number of elements of
the slave. Therefore, working with big meshes will arise high
computational cost. Avoiding this computational cost by se-
lecting just the nodes and surfaces that are most probable to
be in contact is the main objective of this work. Let’s consider
two geometries, G1 and G2. Let’s define the master as the ge-
ometry G1 and the slave as G2. The number of operations of
the direct method proposed before is of order O(nn

G1neG2).
Figure 1 shows that for 106 nodes of the master and 105 el-

ements of the slave, the number of operations is about 1011.
This is a very big number of operations. Thus, if it were pos-
sible to classify the nodes of the master and the elements of
the slave in ’bags’ and then just take into account the bags
that both have, nodes of the master and elements of the slave,
then the direct method could be just applied to that contacting
bags. Defining n

b

as the total number of bags and n

c

b

as the
number of bags that both have, nodes and elements, figure 2
shows how when the percentage of n

c

b

n

b

decreases, the number
of operations decreases too.

nodes
101 102 103 104 105 106

#
 o

p
e

ra
tio

n
s

103

104

105

106

107

108

109

1010

1011

102 elements

103 elements
104 elements

105 elements

Fig. 1 Number of operations needed to compute a contact pair as a
function of nodes of the master and elements of the slave.

1

nodes
101 102 103 104 105 106

#
 o

p
e

ra
tio

n
s

104

105

106

107

108

109

1010

1011

n
b

c/n
b
=5%

n
b

c/n
b
=10%

n
b

c/n
b
=15%

n
b

c/n
b
=50%

n
b

c/n
b
=75%

n
b

c/n
b
=100%

105 elementos

Fig. 2 Number of operations needed to compute a contact pair as a
function of nodes of the master and elements of the slave, using the
classification in bags.

2 Methodology

The algorithm to compute the contact pair follows the next
steps:

• Define the domain.

• Compute the number of divisions.

• Generate the cube mesh.

• Classify the nodes of the master.

• Classify the elements of the slave.

• Check the bags with nodes and elements.

Henceforth, everything will be developed for a three dimen-
sional space, therefore the bags will be called cubes, since
these are the shape they adopt.

2.1 Step 1. Define the domain

Let’s define the domain of geometries as the addition of both
domains, the domain of the master and the domain of the slave.
Then W

ms

= W
m

�W
s

. The domain W is defined by the mini-
mum and maximum components of all points in W

ms

; see fig-
ure 3.

W := {P

min

,P
max

}
P

min

:= (x
min

,y
min

,z
min

)

P

max

:= (x
max

,y
max

,z
max

)

(1)

Fig. 3 Graphic representation of the rectangular domain (2D), that
evolves the geometry.

2.2 Step 2. Compute the number of divisions

The number of divisions are computed by the user definition
of the parameter influence radius (rI). The influence radius is
the maximum distance at which a node of the master can see
an element of the slave. That means, that only the elements
that are closer than this distance will be included in the future
computation on the closest contact pair. The computation of
the number of divisions is shown in equation 2, being L

x

,L
y

,L
z

the lengths of each side of the domain respectively. The num-
ber of cubes is the product of the number of divisions in each
direction.

nDiv

i

= int(
L

i

rI

) f or i = {x,y,z}

n

cubes

= nDiv

x

·nDiv

y

·nDiv

z

(2)

2.3 Step 3. Generate the cube mesh

The cube mesh is defined by the minimum and maximum cor-
ner of the cubes, similarly to the domain creation; see figure
4.

C

icube

min

= (x
min

,y
min

,z
min

)

C

icube

max

= (x
max

,y
max

,z
max

)
(3)

2

Fig. 4 Cube mesh with the correspondant corner’s points that
defines the mesh (2D).

2.4 Step 4/5. Classify the nodes of the master and the

elements of the slave

The classification of both, nodes of the master and elements
of the slave, are the key points when the algorithm is imple-
mented in a code. Depending on how those methods are im-
plemented the code would be very time consuming. The key
point to classify the nodes of the masters consists on taking
profit of connectivies. The first node has to be classified by
comparing its coordinates with the coordinates of the cube and
see if it is in between. Then the second node may be the neigh-
bour of the first one (using connectivities), thus the first cube
to check is the cube where the first node was classified. If the
node is not in that cube, a second level search is done in the
neighbours cubes. If the node is not in the neighbours cubes,
then the method starts from the beginning comparing the coor-
dinates of the second node to all cubes. The experience shows
that for dense meshes, most of the nodes are classified within
the neighbours. Therefore, it is not necessary to go through
the whole matrix of cubes several times.

The classification of elements is more difficult since one el-
ement, if it is big enough, may belong to more than one cube.
Since this subject may need a whole article, just will be men-
tioned the two different solutions found to classifying the ele-
ments. The first one (and a bit faster) consists on classifying
the three nodes of the triangle by the use of the method that
classifies the nodes of the master. After that, and always if
the cube structure is known, it is possible to interpolate cubes
along two edges and then project cubes to the interior. The
second one consists on remeshing the element (only if the el-
ement size is bigger than the cube size), and then classify the
nodes obtained from the remeshed element.

2.5 Step 6. Check the cubes with nodes and elements

The last step consists on checking all the cubes and find those
that share nodes and elements. These set of nodes and ele-
ments are the most likely to be in contact and the ones used to
find the minimum with the closest projection.

Figure 5 shows the theoretical number of operations needed
to compute the closest projection using different methods for
node classification. The results obtained are for one million
nodes of the master and one hundred thousand elements. The
dashed line refers to the direct method that computes the pro-
jections element by element for every node. This figure is
equivalent to figure 2 but with the intelligence of the method
included. The node vs. cubes method increases the number of
operations much faster when the number of cubes increases.
It even reaches the number of operations of the direct method
for one hundred thousand elements. On the other hand, the
other methods have similar cost in terms of number of opera-
tions and never exceed the number of operations of the direct
method in the range of study. This result confirms the fact that
the algorithm is sensitive to the implementation.

cubes
102 103 104 105 106

#
 o

p
e
ra

tio
n
s

109

1010

1011

1012

Nodes vs. cubes
Class. by coordinates
Connectivities + neighbours
Connect. + class. by coordinates
Direct method

Fig. 5 Number of operations for the method of classification in
cubes, including the cost of the method itself.

3 Results

In this section there are the results obtained from the tests done
in geometry of figure 6. The figure 7 shows the experimen-
tal results for different meshes when increasing the number
of cubes. This graphic can be compared with figure 5. The
tests show the behaviour expected by the theoretical model,
which is to increase the computational cost while increasing
the number of cubes. Recent tests (results not avaliable in this
article) show that the number of operations also increase when
the number of cubes is small. The interest of this result re-
lies on the fact that exist a number of cubes that minimize the

3

computational cost. The last comment about figure 7 is about
the maximum computational time for one million nodes of the
master and six hundred thousand nodes of the slave is about
thirty seconds. Thus the results not only match the theory in a
qualitative way but the results show that the algorithm is very
fast too.

Fig. 6 Geometry curve: this geometry contains a surface with
strong curvatures that are close to the master surface. The local
minimums of the geomety are not anywere at the same distance
from the master surface.

#cubes
104 105 106 107 108

To
ta

l t
im

e(
s)

10-2

10-1

100

101

102

#nm=1e3,#ns=1e3
#nm=1e4,#ns=1e3
#nm=1e3,#ns=1e4
#nm=1e4,#ns=1e4
#nm=1e3,#ns=1e5
#nm=1e4,#ns=1e5
#nm=1e3,#ns=6e5
#nm=1e4,#ns=6e5

Fig. 7 Computational cost in terms of cpu time (s), for different
number of nodes in the master (n

m

) and slave (n
s

) surfaces.

To conclude this section, the output of the method before
computing the closest projection is presented. Figure 8 shows
in pink, the elements and nodes that will be compared to com-
pute the closest projection, instead of comparing the whole
geometry. It can be seen that the number is much smaller and
how last two concave curves are not included in that compu-
tation, since the distance between them and the master surface
is higher than the parameter influence radius.

Fig. 8 Postprocessed results. Comparison between the actual nodes
and elements to be compared with the total geometry.

4 Conclusions

The method proposed in this article reduces the number of
candidates to be compared for contact detection by the use of
a cube mesh. The main conclusions of this work are:

• The computational cost in terms of time as well as in term
of number of operations is highly reduced depending on
the number of cubes.

• There is a number of cubes that minimizes the computa-
tional time. It is important to select the influence radius
because it defines the number of cubes and the method is
very sensitive to this parameter.

• The classification of elements is solved by using two dif-
ferent strategies: cube interpolation and remeshing. Both
methods have similar cost, being a bit faster the cube in-
terpolation method (12%-18%).

• The theoretic results matches the experimental for mod-
erate and high number of cubes (> 104) cubes (number
of cubes tested)

The future work to be done:

• Study the influence of small number of cubes (< 104)
cubes in the computational time.

• Study the memory consumption of the method, for differ-
ent nodes of the master, nodes of the slave and number of
cubes.

• Estimate the number of cubes for a given number of
nodes and elements in order to optimize the computa-
tional time.

4

5 References

[1] V. Ogarko, S. Luding, A fast multilevel algorithm for con-
tact detection of arbitrarily polydisperse objects, Multi Scale
Mechanics (MSM), CTW, UTwente, Netherlands.
[2] Erfan G. Nezami, Youssef M.A. Hashash *, Dawei Zhao,
Jamshid Ghaboussi, A fast contact detection algorithm for 3-
D discrete element method, Elsevier, Computers and Geotech-
nics 31 (2004) 575587.
[3] Eric Perkins John R. Williams, A fast contact detection
algorithm insensitive to object sizes, Engineering Computa-
tions, Vol. 18 Iss 1/2 (2001) 48 - 62

5

