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Integration of the hybridizable discontinuous

Galerkin (HDG) method and NURBS-Enhanced

Finite Element Method (NEFEM)

Karthik Neerala Suresh

Abstract

NEFEM is a technique that allows a seamless integration of the CAD boundary
representation of the domain and the finite element method (FEM). The HDG is a
new class of discontinuous Galerkin (DG) methods that shares favorable properties
with classical mixed methods such as the well known Raviart-Thomas methods.
In particular, HDG provides optimal convergence of both the primal and the dual
variables of the mixed formulation. This property enables the construction of super-
convergent solutions, contrary to other popular DG methods. NEFEM and HDG
have been integrated to develop a high-order accurate space discretisation method
for flow problems. The developed method was applied to the Poisson’s problem,
obtaining solutions that converged at optimal rates.
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1 Introduction

The last few years have witnessed an increase in enthusiasm in the development of high-
order methods within the finite element community. High-order approximations have
proved to be of special importance while solving high Reynolds number and transient fluid
problems [1]. The ability and efficiency of high-order approximations have been discussed
and proven in recent papers [2]. Specifically, the interest in DG methods has increased
over the past years. In particular, the HDG method, with its stability features, its reduced
number of degrees of freedom, and its superconvergence properties has attracted attention
among all DG methods for implicit schemes [3, 4, 5, 6, 7, 8].

However, in order to be competitive, these methods have to be designed in such a way
that the increased associated computational complexity is more than balanced. Adaptive
mesh refinement is a well known strategy for reducing the cost of a computational sim-
ulation while achieving a given level of accuracy [1, 9]. The superconvergence properties
of the HDG method can come in handy while building in an automatic a posteriori error
estimate based adaptive mesh refinement. However, this might result in higher geometric
errors emerging from the change in the boundary representation due to a local p-adaptive
mesh refinement. Hence in addition to efficiency and robustness, higher-order boundary
representation also continues to be a major obstacle in the path of introducing high-order
methods into industrial design processes [1].
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For high-order methods to be viable in comparison with conventional FE techniques,
it becomes quite essential to use considerably large elements while the variables of interest
must have fewer degrees of freedom [10]. Also an interpolation polynomial of high degree
must be adopted. However, the use of isoparametric elements will not be suitable in the
adoption of the aforementioned parameters, as it will lead to unsustainable geometric
errors that will do away with the benefits of using high-order methods [10]. NEFEM can
easily be extended to high-order methods such as to the HDG method. The work presented
in this report has been carried forward to establish a seamless integration between NEFEM
and the HDG method. While HDG method comes with all the advantages of a high-order
method, NEFEM helps tackle the issues of geometric error engendering out of the use
of isoparametric elements. Combined, a method encompassing both NEFEM and the
HDG method, seamlessly integrated with one another offers hope to overcome all of the
previously mentioned obstacles lingering in the path of introducing high-order methods
into industrial design processes.

2 HDG applied to Poisson’s equation

Let Ω ∈ Rnsd be an open bounded domain with boundary ∂Ω and nsd the number of spatial
dimensions. The strong from for Poisson’s equation along with boundary conditions can
be written as 

−∇ · ∇u = f in Ω,
u = uD on ΓD,

n · ∇u = t on ΓN ,
(1)

where ∂Ω = ΓD ∪ ΓN ,ΓD ∩ ΓN = ∅, f ∈ L2(Ω) is a source term and n is the outward
unit normal vector to ∂Ω. Here standard Dirichlet and Neumann boundary conditions
are considered. Other mixed (i.e. Robin) boundary conditions can also be imposed [10].
The strong from is written in mixed form as a system of first order equations over the
broken computational domain as

∇ · q = f in Ωi and for i = 1..., nel,
q +∇u = 0 in Ωi and for i = 1..., nel,

u = uD on ΓD,
n · q = −t on ΓN ,
JunK = 0 on Γ,

Jn · ∇uK = 0 on Γ,

(2)

for i = 1, ..., nel and where q = −∇u is a new variable. The jump J·K operator is defined
such that, along each portion of the interface Γ it sums the values from the element on
the left and right of say, Ωi and Ωj, namely

J�K = �i +�j

The strong form is written in terms of the local problem and the global problem. First,
the local, element-by-element, problem with Dirichlet boundary conditions is defined,

∇ · qi = f in Ωi,
qi +∇ui = 0 in Ωi,

ui = uD on ∂Ωi ∩ ΓD,
ui = û on ∂Ωi\ΓD,

(3)
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for i = 1, ..., nel. It is considered that û ∈ L2(Γ∪ΓN) is given. This problem produces an
element-by-element solution in each element Ωi for qi and ui as a function of the unknown
û. As a result of this, these problems can be solved independently element by element.

Second, a global problem is defined to determine û which corresponds to the imposition
of the Neumann boundary condition.

JunK = 0 on Γ,
Jn · qK = 0 on Γ,
n · q = −t on ΓN ,

(4)

The numerical traces of the fluxes are defined element-by-element (i.e. for i = 1, ..., nel)
for the sake of stability as

ni · q̂i :=

{
ni · qi + τi(ui − uD) on ∂Ωi ∩ ΓD,

ni · qi + τi(ui − û) elsewhere,
(5)

with τi being a stabilization parameter defined element-by-element, whose selection has
an important effect on the stability, accuracy and convergence properties of the resulting
HDG method.

Necessary discrete spaces required to prescribe the discrete weak forms for the local
and global problems are chosen. With the definition of the numerical fluxes given by
Equation (5), the discretized weak form of the local problems are: for i = 1, ..., nel, find
(qh

i , u
h
i ) ∈Wh × Vh for all (w, v) ∈W(Ωi)× V(Ωi) such that

Auuui︷ ︸︸ ︷
< v, τiu

h
i >∂Ωi

Auqqi︷ ︸︸ ︷
−(v,∇ · qh

i )Ωi

=

fu︷ ︸︸ ︷
(v, f)Ωi

+ < v, τiuD >∂Ωi∩ΓD
+

Auûûi︷ ︸︸ ︷
< v, τiû

h >∂Ωi\ΓD
,

(6a)

AT
uqui︷ ︸︸ ︷

(∇ ·w, uhi )Ωi

Aqqqi︷ ︸︸ ︷
−(w, qh

i )Ωi

=

fq︷ ︸︸ ︷
< ni ·w, uD >∂Ωi∩ΓD

+

Aqûûi︷ ︸︸ ︷
< ni ·w, ûh >∂Ωi\ΓD

,

(6b)

whereas the global problem is: find ûh ∈Mh(Γ ∪ ΓN) for all µ ∈Mh(Γ ∪ ΓN) such that

nel∑
i=1

{

AT
uûui︷ ︸︸ ︷

< µ, τiu
h
i >∂Ωi\ΓD

+

AT
qûqi︷ ︸︸ ︷

< µ,ni · qh
i >∂Ωi\ΓD

+

Aûûûi︷ ︸︸ ︷
< µ, τiû

h >∂Ωi\ΓD
}

=
nel∑
i=1

f û︷ ︸︸ ︷
− < µ, t >∂Ωi∩ΓN

(7)

With the chosen interpolation, equations (6) result in a system of equations for each
element Ωi while the same interpolation applied to Equations (7) produce a system of
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(a) (b)

Figure 1: Coarse mesh of the domain (Ω) with nodes for k = 2 (a) and model problem
solution for the same value of k for the mesh shown in (a).

global equations. See [11] for the detailed derivation of HDG for Poisson’s system. The
concept of NEFEM was introduced from the classical FEM point of view. Its extension
to the HDG method follows the same path. Only those elements in the mesh that are af-
fected by curved boundaries will be subjected to this integration, while the other elements
with planar boundaries will go through the usual HDG routines for the computation of
elemental matrices and vectors. See [10] for details of NEFEM.

3 Results

In order to explain the results of integration of NEFEM and HDG for Poisson’s system,
the problem is is solved in a domain bound by the lines x = 0, y = 0 and y = 1 on the left,
bottom and top, respectively, and by the NURBS curve (x−1)2 +(y−0.5)2 = 0.52 (this is
the implicit, and not the parametrized equation of the NURBS curve) on the right, with
ΓN = {(x, y) ∈ ∂Ω | (x− 1)2 + (y− 0.5)2 = 0.52 , y ≤ 0.5} and ΓD = ∂Ω\ΓN . The source
and the boundary conditions are taken such that the analytical solution is given by

u(x, y) = x cos(y) + y sin(x)

where, u is the velocity of the fluid particle at a point whose coordinates are (x, y).
The plot shown in Figure 1a shows the mesh that was considered for the test, a coarse

mesh with only 12 elements. The approximation order considered for NEFEM integrated
to HDG computation is k = 2, and the black dots on the triangles denote the nodes
used to build the polynomial approximation of the primal and the dual variables, uh and
qh respectively. The numerical solution computed with a polynomial approximation of
degree k = 2 is depicted in Figure 1b. From the plot, the discontinuity of the numerical
solution, uh, which an inherent property of the DG methods, is not very obvious. This
plot is not able to capture the discontinuity because, either k = 2 is good enough to
capture the solution for the given domain, or 2D plots are not good enough to capture
the discontinuities.

Finally, an h-convergence study is performed in order to check the optimal approxima-
tion properties of the implemented integration of NEFEM with HDG. Figure 2 shows the
evolution of the error of uh and u?h in the L2(Ω) norm as a function of the characteristic
element size h for a degree of approximation, k, ranging from 1 to 3. For all the degrees
of approximation considered, the optimal rate of convergence (i.e., k + 1 for the solution
and k + 2 for the postprocessed solution) is obtained.
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Figure 2: Convergence plots for k = 1, 2, 3.

4 Concluding remarks

The main purpose of this work was to gain a working understanding of the HDG method
and NEFEM, two relatively new approaches in the area of computational methods based
on finite elements, in order to integrate these two cutting-edge techniques seamlessly into
one working code for the analysis of problems of interest to the aerodynamic aircraft
design industry. This integrated method was implemented to the 2-D Poisson’s equation.
The obtained results are in agreement with the expected solution, with errors converging
at optimal rates. In the process of doing this a number of interesting observations were
made that have a opened a number of research lines.

NEFEM integrated to HDG presents a case of a high-order method that promises
to be devoid of the issues that are preventing the industry from embracing high-order
methods. Further research needs to be done in order to finally extend this method to
the case of incompressible and compressible Navier-Stokes’ equations, in order to prove
the competency of the method. The extension of the carried work to the 3-D case and
implementation of adaptive mesh refinement are some of the work that need immediate
attention and will be the areas of focus in the work that will follow.
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