
INDUSTRIAL TRAINING, SUMMARY OF THE DEVELOPED WORK AND

REACHED OBJECTIVES.

INOCENCIO CASTAÑAR

Abstract. Internship is a powerful technique to take the �rst steps and assess the e�ectiveness of our
studies. Actually, the purpose of all those who are currently enrolled in a master's or doctoral programme
is to end up being able to apply all the knowledge they have learned. In this article, it is intended to deeply
describe all the work performed during my industrial training course. The main goal of the work was to
come up with the development of both a �le output format using HDF5 and a �le to interoperate between
C++ and Fortran 2003. HDF5 �le format is widely suitable when working with high volume and complex
data such that large scale applications. The interoperability between several programming languages is
hugely recommended because it allows us to take advantage of the advantages of each one of them. Thanks
to this industrial training, it is learned how to work with a real scienti�c group and never give up any
complex problem.

Keywords: industrial training; HDF5 �le format; interoperability, Object Oriented Programming.

Contents

1. Introduction 1
2. Methodology 2
2.1. Learning basics of FEMUSS and its environment 2
2.2. Task 1: HDF5 File Format 3
2.3. Task 2: Interoperability 4
2.4. Master Thesis 5
3. Results 5
4. Conclusions 5
References 6

1. Introduction

Internship is a powerful technique to take the �rst steps and assess the e�ectiveness of our studies.
In fact it is widely used in a lot of master's and university degrees as a compulsory subject in order to
guarantee a successful incorporation of the students to the world of work. I am currently enrolled in the
Master on Numerical Methods in Engineering. As a subject of my master's, it is needed to successfully
complete 450 hours of work in a suitable industrial placement.

In my case, I decided to look for a group of CIMNE within the framework of the Structural Mechanics.
This decision was taken due to the fact I was enrolled in two very interesting subjects: Coupled Problems
and Domain Decomposition Methods for Large Scale Applications. The �rst one deals with those prob-
lems where multi-physics or multi-phase applications are involved (e.g., �uid-structure interaction (see
Fig. 1a), multi�uid �ows (see Fig. 1b) ) whereas the second one tries to come up with the most suitable
techniques to face di�erent problems in realistic large scale applications. As it is already known, it is very
important to work in exciting areas because you will devote a lot of time working on it. For this reason
I started my industrial training with Professor Joan Baiges as supervisor, the head teacher of Coupled
Problems.

Date: January 9, 2018.
E-mail inocasta@gmail.com (IC).

1



INDUSTRIAL TRAINING 2

(a) (b)

Figure 1. Examples of Coupled Problems.

The main goal of the work was to help the research group in the development of their in-house Finite
Element Method code, named FEMUSS (Finite Element Method Using Subgrid Scales). In my case, I
was requested to perform two tasks with my classmate, Samuel Parada.

The �rst main task of the internship was to come up with the development of a �le output format using
a speci�c one, the HDF5 (Hierarchical Data Format 5) standard. HDF5 is a data model, library and �le
format for storing and managing data. It is quite convenient for �exible and for high volume and complex
data due to the fact that it supports an unlimited variety of data types and it can be accessed in parallel
if desired. Up to that point, FEMUSS was provided with two ways of storing data, VTK �le format and
GiD �le format. Both of them are high-quality. However, they are not intended to work in large scale
applications, where lots of processors have to access to the output �le to store data. This procedure must
be done at once in order to reduce waiting times. HDF5 �le format solves this problem and for this reason
it is widely used in large scale computing programs.

On the other hand, the second task was to couple with FEMUSS an external library called MUESLI

[1]. MUESLI (Material UnivErSal LIbrary) is a collection of C++ classes and functions designed to
model material behaviour at the continuum level. Developed at IMDEA Materials, it is available to the
material science and computational mechanics community as a suite of standard models and as a platform
for developing new ones. One of the main features of this library is that it provides well-tested imple-
mentations of several standard material models for both small and large strain solid mechanics, but also
thermal analysis, small strain termomechanical behaviour, �uids and reduced dimensionality models(e.g.,
plane stress, shells, plates, beams). It is also a thread-safe library which means that it can be safely
used in shared and distributed memory computers. This library is written in C++ whereas FEMUSS is
written in Fortran 2033. This task can be split in two steps: First of all it was needed to successfully
build and link both codes and secondly to program a �le to interoperate between those programming
languages. This situation is very common in computational development due to the fact that there are
several programming languages and each of them has its own advantages and drawbacks. Interoperability
allows us to take advantage of the di�erent bene�ts of each kind of programming languages.

The outline of the article is as follows. In Section 2, it is introduced the methodology and the strategy
to carry out our tasks. In Section 3, it is shown some results to verify the implementation of our �les.
Finally, it is drawn some conclusions from the industrial training in Section 4.



INDUSTRIAL TRAINING 3

2. Methodology

The aim of this section is to explain how we managed to complete the requested tasks during the
industrial training. As it was mentioned just before, several works were performed along 450 hours of
work. For this reason, this section is split in several subsections to explain each task in detail.

2.1. Learning basics of FEMUSS and its environment. FEMUSS is an in-house code written in
Fortran 2003. It is based on the principles of Object-Oriented Programming. Object-Oriented Program-
ming (OOP) is a programming paradigm based on the concept of "objects", which may contain data, in
the form of �elds, often known as attributes; and code, in the form of procedures, often known as methods.
A feature of objects is that an object's procedures can access and often modify the data �elds of the object
with which they are associated (objects have a notion of "this" or "self"). In OOP, computer programs are
designed by making them out of objects that interact with one another. There is signi�cant diversity of
OOP languages, but the most popular ones are class-based, meaning that objects are instances of classes,
which typically also determine their type. Both Fortran 2003 and C++ are class-based.

The initial stage was basically dedicated �rst of all to learn the basics of the so-called OOP using the
Fortran 2003 programming language. There were a lot of new concepts for us such that encapsulation,
inheritance, polymorphism ... To see further details of Object-Oriented Programming take a look at [2].

FEMUSS is only available for Linux environments, so that we had to learn how to work in this envi-
ronment. In my case, Linux environment was only used once during my course in Domain Decomposition
Methods and Large Scale Applications so that this part was a little hard. Getting used to deal with the
Linux terminal and basic commands such as copy or move �le, being able to modify them, etc. takes its
time. Also, I was introduced to the Kate �le-modifying program.

The next step was directly to start downloading and installing the code FEMUSS. It could seem very
easy. However, for those who are not knowledgeable about Linux environment it can be a challenge. For
this task, we were assisted by one of the PhD students of the group, which explained us the basic steps
of not only installing the code, but also the ones related with the compiling process of all the �les. At
the end of this �rst day with FEMUSS, we were even able to run a very simple case of �ow on a channel,
using the module dedicated to the Navier-Stokes equations.

Within this part, we had the pleasure of assisting to a seminar giving by Professor Joan Baiges, to other
researchers in CIMNE, where he basically explained and introduced the basics of this simulation tool to
potential future users from other research groups here at UPC.

FEMUSS was built taking into account that it must be able to be adapted to newest codes and ways
of programming.

In order to understand the structure and the operation basics of Femuss, I was provided with a guide of
the code [3]. Therefore, the next step was to read through it in order exactly understand the programming
structure of the code, which will be very important when performing new implementations in the near
future.

The higher level structure in FEMUSS are CASES. In each case, all the processes which take place on
top of the same �nite element mesh are grouped. As a consequence, each case has a mesh, an adaptive
re�ner, a �le postprocessor and might have several physical problems. Cases are de�ned so that the code
is capable of dealing with, for instance, �uid-structure interaction problems where each of the problems is
de�ned in a di�erent computational domain and with di�erent mesh requirements.

The mesh object takes care of all the geometrical information (e.g., elements, connectivities, coordinates,
etc). It also is in charge of loading shape functions etc to the element object, which is the geometrical
entity in charge of providing this information in the elemental subroutine.

The Adaptive re�ner object is an object in charge of de�ning the re�nement strategy when adaptive
mesh re�nement is present. It interacts with the mesh, the physical problems etc in order to update all
the arrays to the new geometrical con�guration after re�nement has taken place. The important point is



INDUSTRIAL TRAINING 4

that the mesh knows nothing about the re�nement procedure, it is only provided with the new modi�ed
arrays, so after the re�nement process the mesh is treated as a usual mesh without adaptive re�nement.

Figure 2. General Structure of FEMUSS: Flowchart .

File postprocessors are objects in charge of writing information to disk so that the results can be
visualized. For instance they will be in charge of writing the velocity, pressure arrays of an incompressible
Navier-Stokes problem to disk so that they can be open by GiD, Paraview, etc,

Another important concept are the Physical Problems and the Physical Problem Drivers. The main
idea here is that a Physical Problem has no interaction with the exterior except through the Physical
Problem Driver, which 'drives' or commands and tells what to do to the physical problem.

The �nal ingredient of the general structure of FEMUSS is the concept of Communication Channels.
Communication channels are basically a set of pointers which allow to pass information between entities
which, on the FEMUSS general structure, do not know anything about each other because they are at
the same hierarchical level.

2.2. Task 1: HDF5 File Format. One of the major problems of using directly the HDF5 is that it is
written in C language, even though it includes wrappers to couple its use with Fortran. Since our FEM
code is written in Fortran, there is the necessity of creating an interoperable �le between them, in order to
allow both platforms to communicate. This step would introduce some di�culty in the programming of the
whole thing and thus, we wanted to avoid that intermediate step. By making some research throughout
internet, we found an already created library able to perform that intermediate step of coupling our Fortran
code with HDF5.

Within this framework, we discovered XH5For from FEMPAR group [4], which is a library to read
and write parallel partitioned FEM meshes taking advantage of the input/outputs provided by the HDF5
library, using directly Fortran code. In other words, it basically allows HDF5 to interpret calls from a
Fortran code. This was exactly what we were looking for.

The next obvious step was to read the XH5For guide with examples, so as to understand the behaviour
of the code and the programming technique (compilation, commands and directives, etc.) needed in order
to include it within FEMUSS.

2.3. Task 2: Interoperability. As pointed out above, one of the major characteristics of MUESLI

library is that it is completely written in C++. This is obviously a drawback for our code, because
FEMUSS is written in Fortran 2003. Therefore, as we described above for the case of HDF5, we need to
have a kind of interpreter so that MUESLI can understand all the information from FEMUSS.



INDUSTRIAL TRAINING 5

This issue is complicated by the fact that both languages have been around for a long time, and various
recent language standards have introduced mechanisms to facilitate interoperability. However, there is
still a lot of old code around, and not all compilers support the latest standards.

Luckily for us, Fortran 2003 provides a standardized mechanism for interoperating with C, and thus
C++. This support covers the following Fortran features:

• Interoperability of procedures - a means of referencing procedures that are de�ned in the C pro-
gramming language, or that can be represented by C language prototypes, and a means of specifying
that a procedure de�ned in Fortran can be called from C.

• Interoperability of types - a means of declaring types and enumerations in Fortran that correspond
to C types.

• Interoperability of global data objects - a means of declaring global variables that are associated
with C variables with external linkage.

• An intrinsic module (ISO_C_BINDING) that provides access to named constants and proce-
dures relevant to C interoperability.

Clearly, any interoperable entity must be such that equivalent declarations can be made in the two
languages. This is enforced within the Fortran program by requiring all such entities to be interoperable.

Even thoughMUESLI provides a wide range of material models, in our case we just wanted to implement
the solid mechanics part, since �uid models are already extensively implemented in FEMUSS. The �nal
implementation took about an entire month of code developing to translate all the features of MUESLI to
FEMUSS.

Finally, to conclude this section, let us point out that, in order to be able to use the MUESLI and
XH5For libraries in a complete way, we needed also to adapt the GiD pre-processing stage for FEMUSS,
i.e. we need to change the Problem-Type de�nition.

2.4. Master Thesis. The �nal part of the industrial training was completely dedicated to work on the
future master thesis. Professor Joan Baiges proposed me to develop either an electromagnet hydrodynamics
coupled problem or develop a code for topology optimization. The �rst one is related to study the
magnetic properties of electrically conducting �uids. On the other hand, Topology Optimization (TO)
is a mathematical method that optimizes material layout within a given design space, for a given set of
loads, boundary conditions and constraints with the goal of maximizing the performance of the system.
TO is di�erent from shape optimization and sizing optimization in the sense that the design can attain
any shape within the design space, instead of dealing with prede�ned con�gurations. Yet interesting, the
electromagnet hydrodynamic problem has few realistic practical applications so that I decided to study
and develop a code for Topology optimization for both small and large deformations.

Up to know, the work done for this part entails to study the already implementations done for topology
optimization in FEMUSS and to do a bibliographical research on topology optimization methods and
properties. [5] [6] .

3. Results

In this section, it is analysed that the programmed �les are well-implemented. First of all our �les are
carried out several tests to check that they satisfy all the requirements of our code FEMUSS. Once our
�les have passed all tests, it is intended to validate our codes. Each �le must be validated in di�erent ways.

As it was explained in Section 1, HDF5 �le format is very suitable when working in realistic large scale
applications because it decreases waiting times when accesing data to store it. For this reason , it was
checked that the time needed to store the data for HDF5 �le was the shortest in comparison with the
already existing output �le formats. Unluckily, it would be needed some extra hours of supercomputers
to extract more results.

Let us consider a simple problem, in 2D. Our goal is to show that the �le does not perturb the parallelism
propoerty of the code. In other words, that it is well-implemented and the data is accesed at once per



INDUSTRIAL TRAINING 6

each processor when storing the data. Let us consider a number of processors from 8 to 128. It can be
seen at �gure 3 that the execution time decreases when increasing the number of processors so as our code
bahves correctly in parallel.

Figure 3. Execution Time of a given problem against number of processors.

On the other hand, to check the well implementation of our interoperability code, it was needed to
compare some physical problems by using the external library of MUESLI against the same problems
by using an already well-implemented code, such that the module for small strains of FEMUSS itself.
Therefore, both modules gives the same results for di�erent problems so as to we can conclude that our
interoperability �le was well-implemented.

4. Conclusions

To end up this article, it is drawn some conclusions with respect to the work performed along the
industrial training.

In order to be able to start our tasks, it was needed some time to get used to FEMUSS and its
environment. We were warned about how di�cult this step was. E�ectively, I can bear witness to
it. There were a lot of new concepts such that Object-Oriented Programming, Linux environment or
FEMUSS itself. It was pretty di�cult but we managed to achieve it.

The �rst main goal of the internship was to investigate di�erent �le output formats for the management
of extremely large and complex data collections used in large scale supercomputing applications. Within
this framework, an HDF5 �le output format was developed for FEMUSS. As it was shown above, it leads
our FEM code to decrease waiting time when storing data.

The second main task was dedicated to learn how to link and compile external libraries with our FEM
code. Related to this, we have coupled FEMUSS, written in Fortran 2003, withMUESLI, a solid mechanics
library written in C++, by developing an interface for programming languages interoperability. As it was
seen in Section 3, the �le is well-implemented and it passes all tests.

Finally, the last part of the industrial training was mainly dedicated to work related with the Master
thesis, in my case on the study and development of topology optimization, which are to be modelled with
both small and large strain deformations.

References

[1] Portillo, D., Pozo, D. D., Rodríguez-Galán, D., Segurado, J., & Romero, I. MUESLI: A Material

UnivErSal LIbrary. Advances in Engineering Software, 105, 1-8.. 2017
[2] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship. Prentice Hall, 2008.
[3] Joan Baiges, Femuss documentation. Technical report. International Center for Numerical Methods in

Engineering, 2014



INDUSTRIAL TRAINING 7

[4] Santiago Badia, Alberto F. Martín & Javier Principe FEMPAR: An object-oriented parallel �nite

element framework.

[5] Cintia Gomes Lopes, Renatha Batista dos Santos & Antonio André Novotny. Topological Derivative-
based Topology Optimization of Structures Subject to Multiple Load-cases. Latin American Journal of
Solids and Structures, 2015.

[6] M.P. Bends�oe & O.Sigmund Topology Optimization: Theory, Methods and Applications.Springer, 2003.

Universitat Politècnica de Catalunya, Jordi Girona 1-3, Edifici C1, 08034 Barcelona, Spain.


	1. Introduction
	2. Methodology
	2.1. Learning basics of FEMUSS and its environment
	2.2. Task 1: HDF5 File Format
	2.3. Task 2: Interoperability
	2.4. Master Thesis

	3. Results
	4. Conclusions
	References

