
Communication Skills 2

Assigment 2: Writing

Numerical simulation of wound healing processes (Part I)

Lisandro Roldan, Pablo Sáez
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Abstract

Gap closure of wounds in tissues is critical for the
development of living organisms. It is achieved by a
coordinated response of various mechanisms: once the
gap is produced signals travel through the cells and the
tissue respond mechanically to it in a non-linear way
to close reduce the hole. In this paper we present a
numerical approach to simulate the mechanical response
of the tissue during the first stages of the wound healing
process using a Neo-Hookean model with growth driven
either by volume or density change.

Index terms— Biomechanics, Multiphysics, Electro-
Mechanical Coupling

1 Introduction

Gaps in multicellular tissue naturally occur during
the lifetime of an organism, from developmental stages
to adult life. Holes within tissues may be natural
consequences of physiological processes or an outcome
of pathological or injurious events and result in ulcers
and wounds. [4, 16,17,19,27,29,30]

Closure of wounds and gaps in tissues is funda-
mental for the correct development and physiology of
multicellular organisms and, when misregulated, may
lead to inflammation and tumorigenesis [25]. That is
why a clear understanding of this phenomena and the
mechanisms involved is so important.

Properties like the ability to sense tension changes
within the tissue, repair its defects, and elicit effective
immune responses are coordinated and regulated in very
robust ways from a very early point after injury and,
most importantly, are highly conserved among different

types of tissues. Therefore, studying wound healing in
simple model systems can shed light on fundamental
processes that ultimately might prove essential to our
understanding of the more complex wound healing
response observed in human tissues. [3]

A crucial step of the wound healing response is the
restoration of a continuous epithelial layer to recover
tissue homeostasis, regain barrier integrity, and protect
organisms from infection [7]. Epithelial repair is achieved
through the collective movement of wound-bordering
cells into the wound bed. To account for this collec-
tive movement, two main mechanisms are commonly
invoked [2, 15, 30]. The first one is the assembly of a
supracellular actomyosin ring at the wound margin,
whose contraction drives the wound edges together like a
purse-string [6,14,20,31] . The second mechanism is col-
lective migration of marginal and submarginal cells led
by lamellipodial and filopodial protrusions [8,9,22,23,32].

Before the wound shows any significant reduction of
its area [3], a series of processes occur culminating in
the formation of the actomyosin ring (see Figure 1)

Firstly, after wound induction is the displacement of
tissue that surrounds the wound, causing a significant
deformation of the cells and their contents. The cy-
toskeleton networks are stretched in the axis parallel to
the wound margin and compressed in the perpendicular
axis. Consequence of the mechanical stress that cells
suffer is a dramatic increase in intracellular calcium. [3]

High levels of intracellular calcium affect many
signaling pathways, but one of the proteins that it
regulates, Gelsolin , seems to have an important role
in the generation of new actin filaments. Gelsolin has
actin filament - severing activity and its downregulation
impairs the actin flow. Cytoskeleton deformation
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together with the Gelsolin-severing activity create the
appropriate combination of exposed barbed ends and
released actin monomers that can trigger a rapid burst
of forming dependent elongation of actin filaments that
kicks off the actin flow. The distance from the wound
margin at which this phenomenon occurs depends on
the extent of tissue displacement. [3]

The step that follows the initial burst of actin fila-
ments seems to be the recruitment of myosin motors
that act on the filaments to initiate a flow of actomyosin
and apical cell constriction that propagates toward the
wound edge. The actomyosin flow is likely the result
of local cycles of actomyosin assembly and contraction
followed by disassembly and restoration of homeostatic
levels. [3]

The goal of this work is to perform a numerical
simulation of this early stage of the wound closure.
It is important to note that the the formation of the
actomyosin ring occur before any considerable closure
of the wound occurs, and therefore in this stage the
phenomena is considered coupled only in one direction
for the simplicity of the model and in the late stages of
the simulation they will be fully coupled.

2 Governing Equations

2.1 Kinematic equations

First, we reiterate the basic equations of the kinemati-
cally non-linear behavior. Our most important kinematic
quantity is the deformation gradient F, the tangent of the
nonlinear deformation map ϕ, [24]

F = ∇Xϕ. (1)

Where the symbol ∇X denotes the spatial gradient with
respect to the referential coordinates X. We can then
introduce the Jacobian J = det(F) and the right Cauchy
Green deformation tensor, [24]

C = Ft · F. (2)

To account for the characteristic quasi-incompressible
behaviour of soft biological tissues, we adopt a
volumetric-isochoric decomposition of the deformation
gradient, [10, 11]

F = J1/3F̄ (3)

The over-bar is associated with the prefix isochoric and
denotes the volume-preserving part. Accordingly, F̄ de-
notes the isochoric deformation gradient with det(F̄) =

1, and [24]

C̄ = F̄
t · F̄. (4)

denotes the associated isochoric right Cauchy Green de-
formation tensor. It is convenient to introduce the first
and fourth invariants, [24]

Ī1 = C̄ : I and Ī4 = C̄ : N (5)

where N = n ⊗ n denotes the structural tensor defined
in terms of the characteristic microstructural direction
n. [24]

2.2 Quasi-incompressibility Mechanics

Second, we summarize the basic equations of the consti-
tutively non-linear behaviour. For soft biological tissues
it is common to adapt the framework of hyperlasticity,
based on the definition of a strain energy density function
Ψ. To account for quasi-incompressiblity, we additively
decompose this strain energy density function into volu-
metric and isochoric parts, [24]

Ψ = Ψvol(J) + Ψiso(C̄). (6)

From the evaluation of the dissipation inequality [1, 21],
we obtain the second Piola-Kirchhoff stress [24],

S = 2∂CΨvol + 2∂CΨiso(C) = Svol + Siso (7)

which consists of a volumetric part [24]

Svol = 2∂CΨvol = J∂JΨvolC
−1 (8)

and an isotropic part [24]

Siso = 2∂CΨiso = 2∂C̄Ψiso : ∂CC̄ = J−2/3P : S̄ (9)

Here S̄ = 2∂C̄Ψiso is the fictitious second Piola-Kirchhoff
stress and P = I− 1

3C−1⊗C denotes the fourth order pro-
jection tensor. Through the contravariant push forward
operation, we obtain the Cauchy stress σ, [24]

σ =
1

J
F · S · Ft (10)

which is typically required for the finite element imple-
mentation. The tensor of tangent moduli, a fourth order
tensor that relates incremental stresses and strains, is es-
sential for a consistent finite element implementation. It
represents the total derivative of the stress S with respect
to the deformation tensor C, [24]

C = 2dCS = Cvol + Ciso (11)

and consists of a volumetric contribution, [24]

Cvol = 2dCSvol = 2Jp̃C−1 ⊗C−1 − 2JpIC−1 (12)
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Figure 1: Graphic model. Schematic representation of the sequence of events that we propose to occur immediately
after wounding simple epithelia.(A) Intact tissue. (B) Wounding released tension and the tissue is displaced from
the wound center toward the periphery (arrows). (C) The mechanical stress leads to a burst of intracellular calcium
(blue) in the cells that surround the wound. (D) The increase of intracellular calcium (blue) combined with the
effects of cell and cytoskeleton deformation determine a region around the wound where a pulse of actin filaments
(red) is formed. (E) The actin filaments combined with myosin motors generate an actomyosin flow (red) that
travels from cell to cell from the periphery toward the wound margin. (F) When the actomyosin flow reaches the
wound margin it contributes to the formation of the wound edge actomyosin cable (green). [3]

and an isochoric contribution [24]

Ciso = 2dCSiso = P : C̄ : Pt +
2

3
J−2/3tr(Siso)P̃ (13)

−2

3
[C−1 ⊗ S̄ + S̄⊗C−1] (14)

Here p denotes the hydrostatic pressure with p̃ = p +
J∂Jp, andC̄ = 4J−4/3∂C̄⊗C̄Ψiso are the fictitious elastic
tangent moduli [12]. In addition, we have introduced
the following abbreviations for the fourth order tensors
P̃ = IC−1 − 1

3C̄⊗ C̄ and IC−1 = 1
2 [C⊗̄C + C⊗C], where

the non-standard fourth order tensor products take the
following interpretation, {•}⊗̄{◦}ijkl = {•}ik{◦}jl and
{•}⊗{◦}ijkl = {•}il{◦}jk.. [24]

2.3 Kinematics of growth

Within the framework of finite growth, the key kinematic
assumption is the multiplicative decomposition of the de-

formation gradient F into an elastic part Fe and a growth
part Fg [26].

F = Fe · Fg (15)

While we can think of the growth tensor Fg as a second-
order variable to characterize arbitrary forms of isotropic
or anisotropic growth, here we will parameterize the
growth tensor exclusively in terms of a single scalar-
valued variable, the growth multiplier θ [13]. This ap-
proach is conceptually generic and can be easily adapted
to model volume growth, area growth [5], and fiber
growth [33]. We denote the Jacobians of the elastic
tensor and of the growth tensor as Je = det(Fe) and
Jg = det(Fg), such that [28]

J = JeJg (16)
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We can then introduce the elastic right Cauchy Green
tensor, [28]

Ce = Fe
t · Fe = Fg

−t ·C · Fg
−1 (17)

and relate it to the total right Cauchy Green tensor C
using the inverse growth tensor.

We specify the growth tensor as

Fg = I + [1− θ]n⊗ n (18)

where θ is the scalar-valued growth multiplier that char-
acterizes the amount of growth and n is the second prin-
cipal direction of the deformation gradient. The sensitiv-
ity of growth with respect to the growth multiplier then
takes the following simple form,

∂θFg = n⊗ n (19)

2.4 Growth driven by volume change

2.4.1 Constitutive equations

We embed the kinematic characterization of growth into
the hyperelastic baseline description introduced in Sec-
tion 2.2. To this end, we reparameterize the free en-
ergy function Ψ(Ce), which was initially parameterized
in terms of the elastic deformation tensor Ce, in terms
of the total deformation tensor C and the growth tensor
Fg, such that Ψ(C,Fg) and [24]

Ψ̇ = ∂CΨ : Ċ + ∂FgΨ : Ḟg (20)

Thermodynamic considerations motivate the introduc-
tion of the second Piola-Kirchhoff stress, [24]

S = 2∂CΨ = 2∂CeΨ : ∂CCe = Fg
−1 · Se · Fg

−t (21)

Here, Se = 2∂CeΨ is the classic elastic second Piola-
Kirchhoff stress as introduced in equation (7). To derive
the Lagrangian tangent moduli, essential for a consis-
tent finite element implementation, we evaluate the to-
tal derivative of the second Piola-Kirchhoff stress S with
respect to the right Cauchy Green deformation tensor
C, [24]

C = 2dCS = Ce + Cg

= 2∂CS
∣∣
Fg

+ 2∂CS
∣∣
F

= 2∂CS
∣∣
Fg

+ 2
[
∂FgS : ∂ϑFg

]
⊗ ∂Cϑ

∣∣
F

(22)

The first term of equation (22) represents the pull back
of the elastic tangent moduli to the undeformed reference
configuration, [24]

Ce = 2dCS
∣∣
Fg

= [F−1
g ⊗F−1

g ] : 2dCe
Se : [F−t

g ⊗F−t
g ] .

(23)

Here, 2dCeSe are the classic elastic tangent moduli as
introduced in equation (11). The second term of equation
(22) is related to the linearization of the growth model,
[24]

Cg = 2dCS
∣∣
F

= 2
[
∂FgS : ∂ϑFg

]
⊗ ∂Cϑ

∣∣
F

(24)

The first term, ∂FgS, is conceptually generic, [24]

∂FgS =− [ F−1
g ⊗S + S⊗F−1

g ]

− [ F−1
g ⊗F−1

g ] : 1
2 C : [ F−t

g ⊗Ce + Ce⊗F−t
g ] ,

(25)

We define the evolution of the strain driven growth mul-
tiplier [24]

θ̇ = k(θ)φ(Ce) (26)

Where k is a limiting funcion that ensures that the tissue
does not grow unboundely [18]

k =
1

τ

[
θmax − θ
θmax − 1

]γ
(27)

with ∂θk = −γk/[θmax − θ]. Growth evolves in time ac-
cording to three parameters, the maximum amount of
growth θmax, the adaptation speed τ , and the nonlinear-
ity of the growth process γ.
The growth criterion [5]

φ(Ce) = λe − λcrit (28)

with λe = [n·Ce·n]1/2. Here λcrit denotes a physiological
stretch above which growth occurs and n is a principal
direction.

2.4.2 Numerical implementation

For the numerical implementation, we integrate the evo-
lution of growth in time using an implicit Euler backward
scheme

θ̇ = [θn+1 − θn]/∆t (29)

where ∆t denotes the current time increment. This al-
lows us to introduce the discrete local residual,

R = θn+1 − θn − k(θ)φ(Ce)∆t (30)

To solve this non-linear equation, we expand the resid-
ual up to the first order term. We can then solve this
equation, R+ ∂θR∆θ = 0 , within an iterative Newton-
Raphson scheme. With the tangent of the residual,

K = ∂θR = 1− [k∂θφ+ ∂θkφ]∆t

we can incrementally update the growth multiplier
θn+1 ← θn − R/K until the residual R has converged
towards a small enough user-defined tolerance. Table 1
summarizes the local algorithmic treatment of the nu-
merical procedure, which can be easily embedded into
any finite element setting at the constitutive level.
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Input: Ft+1, θt

1. Compute different kinematic variables: Ct+1,Ft+1
e = Ft+1 · Ftg and consitutive variables St+1,St+1

e

2. Check for growth
IF (λ > λcrit) THEN Determine new growth multiplier
WHILE R > Tol
Calculate residual

R = θn+1 − θn − κ(θ)φ(Ξ)∆t, (31)

Calculate tangent
K = 1− [κ∂θφ+ θ∂θκ] ∆t (32)

Update growth
θn+1 ← θn −R/K (33)

END

3. Compute Cauchy stresses σt+1

Compute tangent moduli Ct+1

Output: σt+1,Ct+1, θn+1

Table 1: Algorithm for a implicit Euler scheme of volumetric growth

2.5 Growth driven by density change

2.5.1 Constitutive equations

In this case the growth is dependent on the density of
actin ρact in the tissue well as the material density ρ .
We define the total strain energy as

Ψ = ρΨneo + ρactΨ
act (34)

involving Ψneo, a classical Neo-Hookean strain energy,
and adding a second one Ψact to account for the reaction
of the tissue to the presence of actin. The neo-hookean
part of the energy is defined by the equation

Ψneo
0 =

λ

2
ln(J)2 +

G

2
(I1 − ndim − 2ln(J)) (35)

where λ and G are the first Lamme parameter and shear
modulus of the material respectively, J is the jacobian for
the total strain, the first invariant of the Cauchy-Green
deformation tensor is I1 = tr(C) and ndim is the number
of dimensions considered. The other part of the energy
follows the following equation

Ψact
0 = (36)

The variation of the tissue density is defined by the fol-
lowing expression

ρ̇ =

[
ρ

ρ0

]n−m
Ψ−Ψ0 (37)

Where ρ0 is the initial density, n, m and Ψ0 are material
properties. The variation of the actin density is defined

by the mass source R0, which is a function of the first
strain invariant

ρ̇act = R0(C) = f(I1) (38)

2.5.2 Numerical implementation

For the numerical implementation, we integrate the evo-
lution of density parameter in time using an implicit Eu-
ler backward scheme

ρ̇ = [ρn+1 − ρn]/∆t (39)

ρ̇act = [ρn+1
act − ρnact]/∆t (40)

The evolution of the tissue density is calculated using a
residual form

R = ρn+1 − ρn −

([
ρn+1

ρ0

]n−m
Ψneo

0 −Ψ0

)
∆t (41)

and its increment

K = 1− (n−m)

[
ρn+1

ρ0

]n−m
Ψneo

0

ρn+1
∆t (42)

we can incrementally update the density parameter
ρn+1 ← ρn − R/K until the residual R has converged
towards a small enough user-defined tolerance. Table 2
summarizes the local algorithmic treatment of the nu-
merical procedure, which can be easily embedded into
any finite element setting at the constitutive level.
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Input: Ft+1, ρt

1. Compute different kinematic variables: Ct+1 and Ψneo
0

2. Check for growth
IF (Ψneo

0 > tol) THEN Determine new density parameter
WHILE R > Tol
Calculate residual

R = ρn+1 − ρn −

([
ρn+1

ρ0

]n−m
Ψneo

0 −Ψ0

)
∆t, (43)

Calculate tangent

K = 1− (n−m)

[
ρn+1

ρ0

]n−m
Ψneo

0

ρn+1
∆t (44)

Update growth
ρn+1 ← ρn −R/K (45)

END

3. Compute Cauchy stresses σt+1

Compute tangent moduli Ct+1

Output: σt+1,Ct+1, ρn+1

Table 2: Algorithm for a implicit Euler scheme of volumetric growth

2.6 Results

In order to test the growth model, a 2D symmetric mesh
was created. To avoid ill-conditioned elements due to the
large deformations, elongated quadrilaterals were intro-
duced near the gap that simulates the wound, as it can
be observed in Figure 2.

Figure 2: Finite Element Mesh
.

Initially, a free deformation with no evolution of the in-
ternal variable is performed, to simulate the initial wound

opening due to the appearance of an initial gap. In Fig-
ure 3 it can be observed the opening of the wound and the
concentration of the deformation gradient near the bor-
der of the hole when prescribed uniform displacements
are applied in the opposite borders.

Figure 3: Initial deformation stage, deformation
gradient

.

Once the initial expansion is done, with no additional
external loads applied, shrinking due to volume or den-
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sity change can be observed.

2.7 Discussion

Up to the moment this report was written, the separate
implementation of the non-elastic mechanics with
volume/density growth and a diffusion model for the
actin flow were developed. The behaviour of the models
is yet to be tested by using the results of the diffu-
sion problem as inputs for the internal variable evolution.

That been said, the model behaves as expected,
although tunning of the material constants is yet to be
done. The expansion of the hole is done with no need
of growth, and the mesh deformation is only function of
the initial geometry.

The volume changing growth parameter shows a
correlation with the deformation gradient, obtaining
reductions in the internal variable when the gradient is
larger. The density changing model behaves also well
with increase of the actin density when the gradient is
bigger.

It is important to remark that this particular model
is relevant only for the initial stages of the wound re-
pair process, when the flow of substances seems to be
decoupled with the closure of the wound. A fully cou-
pled model is yet to be done to simulate the posterior
stages of the phenomena.
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