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MOTIVATION




OPTIMIZATION

Problem statement

Find x to minimize f{x) subject to g(x) <0

f. objective function ( g, < 0
X: n-vector
g, =0
g: constraints, m-vector g(x) <0 = < .
2,50




CONSTRAINTS

The constraints g can either satisfy:

- An equality —> Lagrange multipliers strategy
minimize fix) | g(x)=0 < WF+AVg=0, g=0.

- Aninequality —> Karush Kuhn Tucker conditions

Theorem: (Kuhn—Tucker) At an optimal point of the problem minimize f{x) subject
to g(x) < 0, there exist Lagrange multipliers A > 0 which satisfy Vf+ A'Vg =0
and A g =0fori=1,...m.




OPTIMIZATION

P+

A simple example:
Parameter  Description Value .
E Young's modulus 29,000 ksi d
B Half-distance between supports 100 in. 7 A Member Cross Section
F Yield stress of materal 36 ksi
t Wall thickness of tube 0.25 in.
P Applied load 100 k
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OPTIMIZATION
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LINEAR
PROGRAMMING

- Simplex method
Find x to minimize ¢'x  subjectto Ax=b, x>0

Partition of the matrix A
Ax=b = A,x,+A,x,=b = x,=A(b-A,x,)

cx=c,x,+c, x,=c, A, (b—A, x)+c, x,
=c, A, b+ (c,—c, A, A)x,
- The simplex method starts with some set x, = 0 and the
coefficient of each (x,), is then examined in ¢'x =0

- If there is any negative coefficient, that variable increases
to reduce f(x). The limit of increase is when some x, is 0.

- By this process, there is one variable going into the basis
and another one coming out




LINEAR
PROGRAMMING

Simplex method

- The simplex method begins at a starting vertex and moves

along the edges of the polytope until it reaches the vertex
of the optimal solution

Optimal
solution




LINEAR
PROGRAMMING

- Interior point methods

Moves along the interior points of the feasible domain

minimize ¢'x subject to Ax = b and x > ()

Looks for an incremental change dx such that

; ;
cx, < cx, and Ax_=Db

fLEW

It turns out that dx is taken to be —Pc.
with the projection P=1-A"(AA")"'A
Then

<0

T T T2
cdx=— Pc = —{T‘PE‘=—HPC




STRUCTURAL DESIGN

- Analysis tools, such as FE solvers
- Redesign

- Reanalyze

Clearly, the response of an elastic structure depends on its
stiffness




LINEAR SYSTEMS VS
OPTIMIZATION

It is frequently possible to replace a linear system by an
optimization problem:

Given a set of linear equations
Ax =b

being the matrix A positive definite, an equivalent
optimization problem is

minimize ®(x) =2 x'Ax —x'b




SEQUENTIAL LINEAR
PROGRAMMING

Linear programming, together with the incremental equations of
structures, provides a robust format form which to solve
problems of structural optimization

Typically, a structural optimization problem is stated as find K,
the matrix of stiffnesses, to satisfy the equations of structures,
together with some displacement or stress constraints and
minimize the structural volume or cost

The incremental version of this problem starts with some given
solution and looks for a dK that satisfies certain constraints(*)

—>» Sequential linear programming problem

(*) Examples of possible constraints: Move limits, scaling, regions of trust
displacement constraints, stress constraints,...




OPTIMIZATION
REVIEW

Nonlinear programming roots: Seminal paper by Lucien
Schmidt, 1960’s

1970’s: Difficulties even for small optimization problems

1990’s: Discussions of mathematical programming methods
for solving large systems.

Actually, we can solve a nonlinear programming problem
with thousands of millions of rows and columns.




COMPLEX
OPTIMIZATION

Multiple loading conditions

Primal Problem

O
minimize ¢ = EZL}- max {‘FII‘ ‘Frl‘}

2

subjectto N'F'=P' and N'F* = P’
Dual Problem
maximize y = (P 6 +(P*)" &°
oL

subjectto | NO' |+|NO* |< =




COMPLEX
OPTIMIZATION

Multicriterion optimization

minimize f(x)= lfl (x), f,(x),--. [, (:~:)| subjectto  g(x)<0

- A priori approach: The different targets are combined into
a single one, turning the multi-objective problem into a
single-objective one.

- Progressive approach: decision making and optimization
are intertwined.

- A posteriori approach: a set of optimal candidate
solutions (Pareto set) is obtained through the optimization
process. Aftegr that, the most convenient solution is
chosen.




COMPLEX
OPTIMIZATION

Incremental equations when shape change is allowed

Equations of structures Incremental form
Equilibrium equations N'F=P N'dF + dN'F=0
Constitutive equations F=KA dF =dK A + K dA
Node/member displacement A=N2d dA =N do+ dN o

The shape optimization problem, after some algebra, turns

out to be: _
find dF, and dR, to

minimize ¢ = [(sgnE)Lde +(N' | F D:—dR;]
subject to K dR+N"dF =0




COMPLEX
OPTIMIZATION

Incremental equations when shape change is allowed

Equations of structures Incremental form
Equilibrium equations N'F=P N'dF + dN'F=0
Constitutive equations F=KA dF =dK A + K dA
Node/member displacement A=N2d dA =N do+ dN o

The shape optimization problem, after some algebra, turns
out to be:
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COMPLEX
OPTIMIZATION

Generating new designs automatically

...an active area of research




AUTOMATED SHAPE
OPTIMIZATION

Search techniques

Mumerical
technigues
Direct
methods

\
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tnethod
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GENETIC
ALGORITHMS

Heuristic algorithms

They model the natural selection process of biology

- Crossover: two or more previous
candidates are compared and parts
are taken from each

- Mutation: there is the potential for
change within an individual design

Initial Population

'

Evaluation of the cost
function

I

Selection

'

Cross-over & Mutation

I

End if Fitting Solution




GENETIC
ALGORITHMS

Evolution of the optimals while varying the objective function

Generation 0 " Generation 11

Generation 10 Generation 30




GENETIC
ALGORITHMS

Crossover and mutation given an initial set of shapes




CONCLUSIONS

We can think about mixing sequential linear programming
together with the incremental equations of structures

—> a general structural optimization solver

- Parametric description of the geometry, and the
restrictions (control points, splines, ...?)

- Finite Elements solver
- Constraints for the shape evolution
- Stress and strains constraints

—> Solve the optimization problem




CONCLUSIONS

Topological optimization Sma r'tDeTM

Topographical optimization Smart Computing. Smart Design Optimization
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