MASTER IN NUMERICAL METHODS

COMUNICAION SKILLS II

FINITE ELEMENT ANALYSIS OF T JOINTS OF TUBULAR STRUCTURES WITH RHS PROFILES

Student:

D. Pablo Pajarón Santos

18, November 2015

Motivation.

- Tubular SHS profiles are commonly used nowadays.
- Design joint formulation are set by European standards
- Stardards are based in thickness more than 2,5 mm.
- Why don't use less sheet thickness?

Generalities.

Generalities

Hotel Burj Al Arab, Dubai

Munich Airport

London Eye

 b_0

Ratios

$$\beta = \frac{b_1}{b_0} \qquad 2\gamma = \frac{b_0}{t_0}$$

$$\eta = \frac{h_1}{t_0} \qquad \tau = \frac{t_1}{t_0}$$

 b_0

Geometry and experimental test.

Deformation Limit Criteria.

Case 1: $\beta \leq 0.85$

- If $N_{3\%b0}$ (corresponding to a strain equal $3\%b_0$) is less than $1,5N_{1\%b0}$ (corresponding to a strain equal $1\%b_0$), then failure forcé is $N_f = N_{3\%b0}$.
- If $N_{3\%b0}$ is upper than 1,5 $N_{1\%b0}$, then failure force is $N_{\rm f}=1,5N_{1\%b0}$.

Case 2: $0,85 \le \beta \le 1,0$

- Failure force is equal to the maximum experimental test force $(N_f = N_{max})$, if the strain associated to this force is less than $3\% b_0$.
- If the maximum experimental test force is upper than the force associated a strain equal to $3\% b_{0}$, then the failure force is $N_{\rm f} = N_{3\% b0}$.

Models and simetry.

Welds Modelling (Model 1).

Communication Skills II

Welds Modelling (Model 2).

Mesh of Model 1.

Mesh of Model 2.

Modelling of loads and boundary conditions.

Loads

- Load by increments of displacement.
- 1= 35 mm.
- 2 = 8 mm.

Boundary conditions

- Only the vertical displacement of the upper section of the brace is allowed.
- Displacement prevented in all axes of the base plate.

Modelling of the material.

Model Validation.

Communication Skills II

P.P.S.

Model 1

•Addition of <u>solid plate</u> improves the Model response.

•Addition of <u>ring weld</u> rises the hardening at the final part of the curve

Model 2

•Once the solid plate has ben validated the simulation in Model 2 is easier.

•The inclusion of the weld and solid plate is is considered too.

Model Verification.

- Deformation Limit criteria: $N_{f,ANSYS} = 46,5 \text{ kN}$.
- Standard EC3 value : 39,5 kN.

Communication Skills II

- The standards are more conservative.
- $\bullet N_{\rm f,ANSYS}$ correspond to a desplacement of 1,7 mm.
- No plastic deformations appear on the chord face or chord side wall face.
- Deformation Limit Criteria obtains the failure force Nf before the critical fail.

- Deformation Limit criteria: $N_{f,ANSYS} = 122,5 \text{ kN}$
- Standard EC3 value = 91,1 kN.
- The standards are more conservative.
- $\bullet N_{\rm f,ANSYS}$ correspond to a desplacement of 0,85 mm.
- No plastic deformations or chord dent.
- Deformation Limit Criteria obtains the failure force Nf before the critical fail.

Model 1 Verification.

Análisis por elementos finitos de nudos en T de estructuras tubulares con perfiles RHS y SHS

Model 2 Verification.

Conclusions.

- It shows that the finite element simulation is a useful tool for predicting the behavior of T-joints with tubular steel profiles.
- The ring weld proposal improves the model response of this, and the inclusion of rigid elements plate in the base of the T-joint, allows the lifting of the bottom chord plate, providing a realistic simulation.
- The failure modes presented in numerical models correspond to those that occurred in experimental trials and proposed by the standard (EC3 and CIDECT) based in β ratio.
- Deformation Limit Criteria gives an accurate force Nf before the failure occurs in T joint.
- European standards provide more conservative resistance values than the values obtained by finite elements model.
 - Can be used at joints with plate thicknesses of 2 mm, even if they were designed to thicknesses greater than 2.5 mm.
 - This would be significant cost savings in the development of small tubular structures with RHS profiles.