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Abstract:

Collective motion is fundamental in flocking or schooling dynamics and represent one of the most 
fascinating sights in nature. In this paper, to describe collective motion, we use one of the most re-
presentative models called the Vicsek Model. The main features of this model is a noise-driven ph- 
ase transition between ordered and disordered phase and its mathematical and computational simpli-
city. We reproduce its basic results and continue our work adding a leader to study how leadership 
affects its dynamics, showing that this new ingredient breaks the phase transition.

I. INTRODUCTION

     In nature, collective motion plays an important role in life being behavior. Examples of that fact 
are seen worldwide and are well-known since it can be seen in our everyday life. Representative 
examples, which highlight that fact, are schools of fish providing protection or outmaneuvering, in a
matter of seconds, a predator, a flock of birds moving around or migrating in formation or a sheep 
herd.

     Although those are the most intuitive examples, there is a wide range of other systems where 
collective motion takes place. From an overcrowded street to cells or bacteria, even non-living 
systems show that kind of collective phenomena [1], like micrometer-sized silver chloride
(AgCl) particles acting as an autonomous micro-motor in an special environmental conditions [2].

     This wide range of scales and systems got the attention of researchers from several fields. 
Biologists were the first who started studying that phenomena [3], followed by computer graphics 
researchers, like C.W. Reynolds, who created realistic animation of birds flocking by setting basic 
rules like collision avoidance and velocity matching, for instance [4]. However, it was not until 
T.Vicsek proposed his model that the physics community took interest in that field [5].

     T.Vicsek presented a model where each individual is constantly updating its velocity direction by
averaging with its closest neighbors, being the system fully determined by the position and velocity 
direction of each particle [5]. From a mathematical and computational point of view, Vicsek model 
is quite simple and doesn’t require big computational efforts and from a physical view, this model 
shows a phase transition between ordered and disordered phase, which makes this model really 
interesting for a physicist. For those reasons, we decided to use Vicsek Model to study collective 
motion. 

     The structure of our work is the following: in Section II, we explain how Vicsek Model works, 
the way we implemented it and finally we present its basic results. After that, in Sec. III we 
introduce a new role (leader) in our system and explore how our system evolves and if the phase 
transition still takes place in function of the fraction of followers. 



II. STANDARD VICSEK MODEL

     The Vicsek Model is based in N self-propelled particles which are able to move in a d-dimen-  
sional box of sides L with constant speed v0.. Each particle interacts with the other ones through 
averaging its velocity direction with other particles inside a range of interaction defined in terms of 
an euclidean distance of radius R0. Since perfect interaction is not realistic, a noise term η is intro- 
duced in order to simulate difficulty in gathering or processing information, etc.

     In a 2-dimensional box, every particle is characterized by two variables, its position ri(t) and its 
velocity direction, which can be represented with only one angle θ(t) arbitrarily chosen between 
[-π , π]. By knowing how both parameters evolve over time, we can fully determine our system’s 
evolution. Then, given that each particle dynamics depend just on its velocity, its future position
can be determined following the Eq.(1):

where Δt represents our integration time step and vi the velocity at time t, which can be decomposed
in terms of θ(t):

     It must be remarked that the only time dependence is found in θi(t) so it is the parameter which 
rules the motion. The conditions that defines θi(t)’s time dependence are two, the way interaction 
between particles is summarized and the impossibility of perfect alignment. As said before, each 
particle averages its direction with all individuals inside its radios of interaction with a noise term 
added to fulfill the second condition. Those conditions lead to:

where η is a parameter which allows us to control the noise intensity and ranges from 0 to 1, ξ is an 
uniformly distributed random number set between [-π ,π] and arg(...)=arctan( vy / vx) is the velocity 
direction. 

     At this point, we need to define a suitable order parameter so as to capture the statistical 
information of the collective motion and to analyze the transition between ordered and disordered 
phase. A possibility is to define it as shown in Eq.(4):

This order parameter gives us information about the disorder of our system in function of η.

     On the one hand, when η is equal to 0, we reach the maximum order possible because all 
particles are aligned exactly to the same direction. Therefore, there is no cancellation in the 
summation, so our order parameter reaches its maximum value ϕ = 1. However, if we increase 
slightly the noise intensity  η, that perfect alignment is broken, although all particles move 
approximately at the same direction, as seen in Fig.(1). Because of that, there are some cancellation 
in the sum and our order parameter decreases its values.

     On the other hand, when we have a high noise intensity η, the term η ξi(t) introduces a huge 
distortion to the alignment and produces a random distribution of each particle’s direction. That 



produces the cancellation of the sum, which makes the order parameter vanish, reaching ϕ = 0 when
η = 1.

 Finally, one can estimate the error 
of the order parameter by computing
its variance as follows: 

Once we have already talked about 
Vicsek Model from a dynamical and 
statistical point of view, we must 
concert about the computational 
strategy to follow:

     First of all we must initialize our system by setting N particles moving with velocity v0 = 0.3 
inside a 2-D box of side L, with density ρ = N/L2. Given that there is no privileged position nor 
direction, we must set them uniformly distributed ranging all possible values [0,L] for the positions 
and [-π , π] for the velocity direction.

     Secondly, because of the fact that we are working with a finite sized system, we need to reduce 
finite size effects. To do so, we work with periodic boundary conditions (PBC) where a particle that 
exits from one side, enter form the opposite one, fulfilling the conservation of the number of 
particles.

     Finally, when considering the distance between particles, in order to know if a particle is inside 
the range of interaction, one must take into account PBC since particles that are at a distance greater
than L/2 are, in fact, at a shorter distance when considering PBC. For instance, consider two 
particles in the opposite frontier of the box, its distance is greater than L/2 but they could interact 
because of the PBC.

     At this point, we begin our simulations by studying the order parameter in function of the noise 
intensity η for different sizes but with constant density ρ = 1.

 From Fig.(2) it can be seen how the 
order parameter evolves in function of η 
for different sizes. When the noise 
intensity is low, for all sizes the order 
parameter is close to 1. While we 
increase the intensity, the order 
parameter gets lower in a different way 
depending on the size. Although for all 
sizes the order parameter decreases, for 
bigger systems it decreases faster. It is 
due to finite size effects. Furthermore, it 
must be remarked that ϕ(η) should tend 
to zero when η tends to 1, however this 
value is never reached, and not only that,



for small sizes,  ϕ is not even close to 0. The reason is because when the noise intensity tends to 1, 
our system’s configuration is basically a set of N random vectors, which, from a mathematical point
of view, its order parameter goes as ϕ ~ 1/√N [6].

     To determine the existence of a true phase transition and when it takes place, we must take a 
close look to the parameter of order and its evolution over time. An evidence of phase transition can
be found in the behavior of the order parameter. Fluctuations on it become more and more 
important while it approaches to the phase transition critical point, being infinite when the transition
takes place.

Analyzing Fig.(3), we 
clearly see how ϕ(t) 
fluctuates when we 
increase η. When the 
noise intensity is far from 
its critical value, it doesn’t
fluctuates as much as it 
does while we approach 
its critical value. When we
get closer, its fluctuations 
start being considerable 
until it reaches its 
maximum value at η =  ηc.
In order to determine ηc 
with precision, we must 
quantify the magnitude of 

the fluctuations. To do so, with analogy with ferromagnetism, we define the susceptibility as in 
Eq.(6):

Recalling Eq.(5) we get: 

      Plotting χ versus η allows us to get some information about the phase transition. Once again, 
making the analogy with ferromagnetism, the presence of a peak is a clear evidence of a second-
order phase transition between ordered and disordered phase which takes place where the peak is 
found.

     A peak is found in the susceptibility 
versus noise intensity (Fig.4), being a 
clear evidence of the existence of a 
phase transition in the Vicsek Model. 

     Once we have already reproduced 
Vicsek’s Model results, we can move an
step forward by introducing new 
features in the model. Our first move is 
to introduce a new role in the system.



III. LEADERSHIP

      When considering social interaction, leadership is an important feature to take into 
consideration. Several species of animals follow a hierarchical structure where some individuals are
followed by the rest of the community, playing the role of a leader.

      In this part, we are interested in the effect produced by a single leader in the collective motion 
and, particularly, how the introduction of that new feature affects the behavior of the Standard 
Vicsek Model from a statistical point of view. 
     
     A non-local leader is introduced, in such a way that its followers (informed individuals) interact 
with it no matter at what distance is found and considering it to have an immutable velocity vleader. 
In spite of having this privilege, if an individual is a follower, it interacts with the leader by taking 
into consideration its direction with the same weight as a normal individual when averaging with its
surrounding neighbors, as shown in Eq.(8):

where εi is a coefficient equal to 1 if the i-th particle is a follower and 0 otherwise. 

     With this slight modification, we proceed the same way as in the no-leader case to see if there is 
a phase transition, it is, we take a close look to the parameter of order behavior and quantify its 
oscillations via the susceptibility χ.

   
  From FIG.(5) it can be clearly seen that the system increases its order state when increasing the 
fraction of informed individuals ω. FIG.(6) shows how this peak vanishes when the fraction of 
informed individuals increase. This fact means that the phase transition is broken and no longer 
exist or in other words, the system is always in an ordered phase.

IV. CONCLUSION

     This work reproduced the behavior of the so called Vicsek Model and proved that there exist a 
noise-driven phase transition between ordered and disordered phase. Then, a new role was 
introduced (leader) and it has been seen that the previous phase transition no longer exist, remaining
our system in an ordered phase no matter the noise intensity applied.



REFERENCES

[1]   T. Vicsek, A. Zaferis. Collective Motion, Physics Reports, 517, 71-140 (2012)

[2]   R. Soto, R. Golestanian. Self-assembly of active colloidal molecules with dynamic functions,     
        PHYSICAL REVIEW E 91, 052304 (2015)

[3]   D. Sinkovits, Flocking Behavior, (May 5, 2006)

[4]   C. Reynolds, Flocks, Herds, and Schools: A distributed Behavior Model, Comput. Graph. 21, 
25 (1987)

[5]   T. Vicsek et al. Novel Type of Phase Transition in a System of Self-Driven Particles. Phys. Rev.
Lett., 75, 1226 (1995)

[6]   F. Ginelli. The Physics of the Vicsek Model, (November 5, 2015)


