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Abstract

A novel computational method is proposed in order to modelling the material non-linearity of Fibre Reinforced

Plastic structures. The enhanced method explained in this paper is the so-called serial-parallel theory (S-P)

which consists on dividing the composite behaviour into two mechanical behaviours, parallel for fibre directions

and serial for orthogonal directions. This division is introduced by means of two ’closure equations’ which make

assumptions of iso-deformation across fibre directions and iso-tension across orthogonal directions to the fibres.

In the present work, the classical theory is combined with serial-parallel method in order to model multi-direction

laminates. The method is validated via different benchmark tests and experimental data obtained from [Hinton

MJ, Soden PD. Predicting failure in composite laminates: The background to the exercise. Comp Sci Technol

1998; 58:100110]. c©2007 Elsevier Ltd. All rights reserved.
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1. Introduction

During the last 5 decades, the use of Long Fibre

Composite (LFC) has been broadly developed in the

naval, aeronautical and automotive industries due to

the fact of their excellent mechanical properties and

densities. This is the major reason which lead re-

searchers to create a mathematical basis description of

the macro-mechanical and micro-mechanical behaviour

of such materials and thus many different models can be

used nowadays. However, this vast range of models is

not in concordance to failure prediction theories which

have not been under an extensive development since 2

decades ago.

This research has been motivated by the increas-

ing use of this products in the industry and the lack

of an efficient computational solution to modelling the

degradation of mechanical properties of the composites

- being able to capture the heterogeneity of the material

in micro-scale without an extremely high computational

cost - and at the same time being able to be attached

or recycled onto many different FEM codes without un-

dertaking enormous changes to the code framework.

Such technology will grant a huge advantage since it
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could reuse currently FEM code for homogeneous mate-

rials into heterogeneous materials or composites. This

fact is the major motivation of this work which seeks

to obtain a sufficient efficient code which can provide

quite an accurate model together with a fast and re-

liable simulation. This model will help to reduce the

expensiveness of the nowadays composite tests in order

to validate composite structures.

The development of such framework for a consti-

tutive composite model uses a laminate approach and

since the non-linear behaviour of component per layer

obligates the use of a sequence approach[1]. Puck[2, 3]

have also remarked that, in the analysis of fibre-

reinforced laminates, it is essential to distinguish be-

tween fibre failure and matrix failure as well as be-

tween fibre degradation and matrix degradation. Which

means that models which only use internal/state vari-

ables of the equivalent homogenized material, will not

be accurate.Furthermore, as shown by Oller et al. [4, 5],

the computational cost of a complete double scale ap-

proach for a large scale non-linear structural analysis is

still not affordable with ordinary computers, even in-

cluding parallel computations.

Inside what is called mean-field methods (MFM)

which assume an average of stress and strain tensor

fields to represent the equivalent fields of the composite

by means of a volumetric participation of each com-

ponent. Voigt[6] and Reuss[7] proposed what in the

present literature is the so-called rule of mixtures (RoM)

and inverse rule of mixtures (iRoM) to compute the elas-

tic constants of the composite.

Classical mixing theory (CMT), whose simpler ex-

pression is the ROM, was firstly studied in 1960 [8] and

lead to the establishment of the basis of subsequent de-

velopments [9, 10, 11, 12]. CMT takes into account the

volumetric participation but no its morphological dis-

tribution sequence (assuming pure parallel behaviour).

Few modifications to this theory were developed [13, 14].

At last, previous research on the field lead the authors

[15, 16] to achieve the methodology explained in this

paper.

In the current work, the serial-parallel theory is used

together with a MFM method. The novel goal of this

research is to developed a serial-parallel rules of mix-

tures and relate the laminate properties depending on

the constitutive laws of the component materials tak-

ing into account their volumetric participation and layer

distribution sequence.

In order to validate the numerical simulation data.

Comparison with the experimental data obtained from

benchmark tests [17] is used.

2. Numerical model development

The serial-parallel rule of mixture is a model firstly

developed by Rastellini and Oller[18] in order to assess

plasticity and damage of the elastic stiffness tensor. The

remarking work of these two author lead to an uncon-

strained non-linear constitutive model of the component

(meaning any kind of constitutive non-linear model can

be used).

The serial-parallel model considers two closure equa-

tions, the first one is what normally is used in most FEM

codes and is called iso-strain hypothesis in fibre direc-

tion (parallel) and the second closure equation which is

governed by an iso-stress hypothesis into the orthogonal

directions to the fibre direction (serial).

The aim of serialparallel (SP) models is to help

quickly and accurately in the assessment of the non-

linear behaviour of composite structures due to material

degradation. The consistency of the results is assured
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by the appropriate election of component material mod-

els.

2.1. Basic notations and definitions

In the development of this theory a two layer com-

ponents model is employed. It is assume that there

exists a periodical sequence of a combination of these

two components inside the representative volume ele-

ment (RVE). This two components will be addressed

as ’matrix’ (m) and ’fibre’ (f). The RVE domain is

denoted by Ω and it is related to the subdomains as

Ω =m Ω ∪f Ω. The volumetric participation is defined

as fk and mk and they fulfil fk +m k = 1.

The composite equivalent properties arise from the

average component properties with the relation:

cσ =m kmσ +f kfσ

cε =m kmε+f kfε
(1)

From a strain driven formulation, it is assumed that the

current state of deformation is defined by strain in a par-

ticular point and set of internal variables (iβ), where i

denotes any of the two components. The constitutive

law is stated by the system of differential equations:

iσ̇ =i g(iε,i β,i ε̇)

iβ̇ =i h(iε,i β,i ε̇)
(2)

2.2. Serial/parallel decomposition

The approach used in this paper is the use of pro-

jector tensors to define the component serial-parallel di-

rections. From tensor algebra, a projector tensor (4th

order tensor), can be defined by means of a change of

basis:

Nij = ei ⊗ ej
PP i,j,q,p = Ni,j ⊗Nq,p
PS = PP − I

(3)

where I is the identity tensor. Now each projected ten-

sor field can be described as:

σi = Pi : σ

εi = Pi : ε
(4)

where i is serial or parallel subscript. And since both

projectors add to the identity:

σ =
∑P
i=S σi

ε =
∑P
i=S εi

(5)

2.3. Closure equation

The closure equation for LFC are:

mεP =f εP =c εP

mσS =f σS =c σS
(6)

These two assumptions were first used by Dvorak and

Bahei-El- Din[19] to define anisotropic plasticity model

and later by Rastellini et al. [15, 16, 18, 20].

2.4. Algorithm

Recapitulating on the different aspects of the algo-

rithm.

2.4.1. Governing Equations

The governing equations for the composite model

are:

1. Constitutive laws:

iσ̇ =i g(iε,i β,i ε̇)

iβ̇ =i h(iε,i β,i ε̇)

i = m, f

(7)

2. Rule of mixtures:

σ =
∑f
i=m

ikiσ

ε =
∑f
i=m

ikiε

i = m, f

(8)

3. Closure equations:

mεP =f εP =c εP

mσS =f σS =c σS
(9)
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2.4.2. Algorithm’s Flow

Considering the model as a strain-driven problem.

Known Variables.

At load step n:

n,iε,n,i β,n,c ε i = m, f (10)

At load step n+ 1:

n+1ε (11)

Unknown Variables.

At load step n+ 1:

n+1,iσ,n+1,c σ i = m, f

n+1,iε,n+1,i β i = m, f
(12)

Kernel Steps.

1. Evaluate the component tensional state using the

constitutive laws in equation (7):

[n+1,iσ,n+1,i ε] = f(n,iε,n,i β,n+1,i ε) (13)

where i = m, f .

2. Evaluate the constitutive tangent tensor:

kCi,j = ∂kσi

∂iεj

kCi,j = Pi :k C : Pj
k = m, f , i, j = P, S

(14)

3. Evaluate the serial state tension residual:

∆σS =m σS −f σS (15)

4. Assume mε to be the independent variable for the

N-R scheme:

fεS(mεS) =
1
fk
εS −

mk
fk

m

εS (16)

5. Use equation (16) into equation (15) and then op-

timising the objective function:

rJ =r (∂(∆σ)S
∂mεS

) =r (mCSS +
mk
fk

fCSS) (17)

where r denotes the iteration loop.

6. Then update of the iterative independent variable:

r+1(mεS) =r (mεS)−r (J−1 : ∆σS) (18)

Flow.

The flow would be 1 → 4 and whether convergence

of the residual has been achieved or not, GoTo 1 again

or Repeat 5, 6, 4 .

Flow Diagram.

Figure 1: Diagram of the code flow.
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3. Numerical Simulation

3.1. Close equations fulfilment

3.1.1. Parallel loading

To test the proposed constitutive model under par-

allel loading, a loadunload controlled longitudinal defor-

mation in fibre direction is applied to a Discrete Kich-

hoff Triangle element with no other constrains. The me-

chanical properties of component materials are shown in

1.

Matrix Fibre

Constitutive law J2 plasticity J2 plasticity

Young modulus (MPa) 40000 80000

Elastic limit (MPa) 1000 3480

Poisson ratio 0.0 0.0

Volume fraction 0.58 0.42

Table 1: Mechanical properties for parallel loading

Observe that the σP is different for each compo-

nent due to the iso-strain hypothesis, but the strains

are equal.

Note that at the beginning the composite stiffness is

intact, then the matrix yields and finally the fiber yields

as well leading to a composite yielding as well. At 10%

the load is reversed, initial elastic stiffness is shown in all

materials during unloading. At complete unload, resid-

ual stresses remain in the components due to plasticity.

These residual stresses are auto-equilibrated since the

resultant stress in the composite is zero.

Figure 2: Parallel stress (MPa) vs. parallel strain curves for the

composite and component materials under parallel deformation-

controlled loadunload testing.

3.1.2. Transversal loading

In order to validate the serial behaviour of the

model, a DKT composite element is subjected to pure

transversal loading. The test is performed by applying

a load unload transversal controlled deformation up to

5% strain.

Matrix Fibre

Constitutive law J2 plasticity Damage

Young modulus (MPa) 3000 2000

Elastic limit (MPa) 60 40

Poisson ratio 0.0 0.0

Volume fraction 0.5 0.5

Table 2: Mechanical properties for transversal loading

Note that ν is equal to 0 to avoid coupling effects

from parallel behaviour. Observe that the εS is differ-

ent for each component due to the iso-stress hypothesis,

but the stress are equal (it is represented by dashed hor-

izontal black lines in Figure(3) ).
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In the first elastic branch (0 to σy = 40 MPa), the

composite transversal stiffness, given by SP model, is

in accordance with the inverse ROM. When the ma-

trix reaches the yielding threshold, this material exper-

iments plastic deformations, but keeps on incrementing

its stress due to its hardening law. This fact also brings

about a reduction in the composite stiffness along the

branch (σy = 40 MPa to σy = 60 MPa), while the fi-

bre remains elastic up to point (σy = 60 MPa), when

its damage begins. The fibre damages along branch

(σy = 60 MPa to σy = 50 MPa), and thus causes all

stresses to decrease; as a consequence, the matrix ex-

periments elastic unload. From point (σy = 50 MPa)

on, the sign of the applied deformation is reversed (un-

loading), consequently all materials experiment elastic

unload. Note that the fibre unloads with a reduced stiff-

ness due to internal damage. Note also that the matrix

unloads with the initial elastic stiffness, and at complete

unload retains residual plastic strains.

Figure 3: Serial stress (MPa) vs. serial strain curves for the

composite and component materials under parallel deformation-

controlled loadunload testing.

3.1.3. Transversal stiffness vs. fibre volume fraction

For this validation, empirical formulas and exper-

imental data is used to validate the SP-ROM theory.

The validation consists in subjecting a DKT laminate

element to pure transversal loading at different fibre vol-

ume fractions Vf . The mechanical properties for this

numerical simulation are:

Matrix Fibre

Material Epoxy Glass

Young modulus (MPa) 105950 5000

Poisson ratio 0.22 0.38

Volume fraction 0.6 0.4

Table 3: Mechanical properties for transversal stiffness test for a

E-Glass composite.

The experimental data has been obtianed from

Barbero[21] and the Halpin-Tsai equations from[22].

Figure 4: Relative transversal stiffness Ef/Em vs. fibre volume

fraction Vf . Comparison between the results given by the pro-

posed method, experimental data, ROM and HalpinTsai equa-

tion.

Note that Figure (4) for SP-RoM model, with a

ν = 0, it would recover the RoM model since no Poisson
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effect would be taken into account. It can be seen that

the transversal stiffness for the fibre is not underesti-

mated as for the RoM model and clearly fits better the

experimental data than the RoM theory and Halpin-

Tsai model.

4. Concluding Remarks

The serial-parallel (SP) model is combined with clas-

sical lamination theory (RoM) to describe laminates

consisting of unidirectional continuously reinforced lay-

ers. Its relative simplicity and efficiency make the serial-

parallel approach well suited for implementation as a

material model in finite element programs for studying

the elasto-plastic response of structures or components

made of long fibre-reinforced laminated composites. In

addition, it requires relatively small computational re-

sources when implemented into a structural FE code.

It still presents a drawback regarding underestimation

of the transversal stiffness.

Quadratic convergence is achieved on local nodes for

well-posed constitutive models. Also obtaining a more

realistic equivalent constitutive tangent operator for the

composite allows to obtain a quicker convergence for the

global equilibrium.

Comparison between experimental and numerical

testing carried out on material samples enables us

to state that the methodology presented here is very

promising for non-linear analysis of composite materi-

als and structures.
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