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Abstract

Dam behaviour is difficult to predict with high accuracy. Numerical models for structural

calculation solve the equations of continuum mechanics, but are subject to considerable

uncertainty as to the characterisation of materials, especially with regard to the foundation.

As a result, these models are often incapable to calculate dam behaviour with sufficient

precision. Thus, it is difficult to determine whether a given deviation between model results

and monitoring data represent a relevant anomaly or incipient failure.

By contrast, there is a tendency towards automatising dam monitoring devices, which

allows for increasing the reading frequency and results in a greater amount and variety of

data available, such as displacements, leakage, or interstitial pressure, among others.

This increasing volume of dam monitoring data makes it interesting to study the ability

of advanced tools to extract useful information from observed variables.

In particular, in the field of Machine Learning (ML), powerful algorithms have been

developed to face problems where the amount of data is much larger or the underlying

phenomena is much less understood.

In this thesis, the possibilities of machine learning techniques were analysed for applica-

tion to dam structural analysis based on monitoring data. The typical characteristics of the

data sets available in dam safety were taking into account, as regards their nature, quality

and size.

A critical literature review was performed, from which the key issues to consider for

implementation of these algorithms in dam safety were identified.

A comparative study of the accuracy of a set of algorithms for predicting dam behaviour

was carried out, considering radial and tangential displacements and leakage flow in a 100-

m high dam. The results suggested that the algorithm called “Boosted Regression Trees”

(BRT) is the most suitable, being more accurate in general, while flexible and relatively easy

to implement.

At a later stage, the possibilities of interpretation of the mentioned algorithm were eval-

uated, to identify the shape and intensity of the association between external variables and

the dam response, as well as the effect of time. The tools were applied to the same test case,

and allowed more accurate identification of the time effect than the traditional statistical

method.



Finally, a methodology for the implementation of predictive models based on BRT for

early detection of anomalies was developed and implemented in an interactive tool that

provides information on dam behaviour, through a set of selected devices. It allows the user

to easily verify whether the actual data for each of these devices are within a pre-defined

normal operation interval.



Resumen

El comportamiento estructural de las presas de embalse es dif́ıcil de predecir con pre-

cisión. Los modelos numéricos para el cálculo estructural resuelven bien las ecuaciones de la

mecánica de medios continuos, pero están sujetos a una gran incertidumbre en cuanto a la

caracterización de los materiales, especialmente en lo que respecta a la cimentación. Como

consecuencia, frecuentemente estos modelos no son capaces de calcular el comportamiento

de las presas con suficiente precisión. Aśı, es dif́ıcil discernir si un estado que se aleja en

cierta medida de la normalidad supone o no una situación de riesgo estructural.

Por el contrario, muchas de las presas en operación cuentan con un gran número de

aparatos de auscultación, que registran la evolución de diversos indicadores como los movimien-

tos, el caudal de filtración, o la presión intersticial, entre otros. Aunque hoy en d́ıa hay

muchas presas con pocos datos observados, hay una tendencia clara hacia la instalación de

un mayor número de aparatos que registran el comportamiento con mayor frecuencia.

Como consecuencia, se tiende a disponer de un volumen creciente de datos que reflejan el

comportamiento de la presa, lo cual hace interesante estudiar la capacidad de herramientas

desarrolladas en otros campos para extraer información útil a partir de variables observadas.

En particular, en el ámbito del aprendizaje automático (machine learning), se han desar-

rollado algoritmos muy potentes para entender fenómenos cuyo mecanismo es poco conocido,

acerca de los cuales se dispone de grandes volúmenes de datos.

En la tesis se ha hecho un análisis de las posibilidades de las técnicas más recientes de

aprendizaje automático para su aplicación al análisis estructural de presas basado en los

datos de auscultación. Para ello se han tenido en cuenta las caracteŕısticas habituales de las

series de datos disponibles en las presas, en cuanto a su naturaleza, calidad y cantidad.

Se ha realizado una revisión cŕıtica de la bibliograf́ıa existente, a partir de la cual se han

identificado los aspectos clave a tener en cuenta para implementación de estos algoritmos en

la seguridad de presas.

Se ha realizado un estudio comparativo de la precisión de un conjunto de algoritmos

para la predicción del comportamiento de presas considerando desplazamientos radiales,

tangenciales y filtraciones. Para ello se han utilizado datos reales de una presa bóveda. Los

resultados sugieren que el algoritmo denominado “Boosted Regression Trees” (BRTs) es el

más adecuado, por ser más preciso en general, además de flexible y relativamente fácil de



implementar.

En una etapa posterior, se han identificado las posibilidades de interpretación del citado

algoritmo para extraer la forma e intensidad de la asociación entre las variables exteriores

y la respuesta de la presa, aśı como el efecto del tiempo. Las herramientas empleadas se

han aplicado al mismo caso piloto, y han permitido identificar el efecto del tiempo con más

precisión que el método estad́ıstico tradicional.

Finalmente, se ha desarrollado una metodoloǵıa para la aplicación de modelos de predicción

basados en BRTs en la detección de anomaĺıas en tiempo real. Esta metodoloǵıa se ha

implementado en una herramienta informática interactiva que ofrece información sobre el

comportamiento de la presa, a través de un conjunto de aparatos seleccionados. Permite

comprobar a simple vista si los datos reales de cada uno de estos aparatos se encuentran

dentro del rango de funcionamiento normal de la presa.
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1
Introduction and Objectives

1.1 Introduction

Dams play a key role in our society, since they provide essential services to our way of living,

such as flood defence, water storage and power generation. Moreover, an eventual failure

might have catastrophic consequences in terms of casualties, economic and environmental

losses, as was unfortunately verified in the past [19].

As a consequence, safe dam operation needs to be ensured, and potentially anomalous

performance shall be detected as early as possible, to avoid serious malfunctioning or fail-

ure. While the first objective is achieved by means of an appropriate maintenance program

both for the structure and the hydro-electromechanical devices, failure prevention by early

detection of anomalies is primarily based on surveillance tasks [32], [33].

In turn, surveillance is based on two main pillars [32]: a) visual inspection and b) mon-

itoring of dam and foundation. Its main objective is to reduce the probability of failure

[33].

Lombardi [40] formulated the objectives of dam and foundation monitoring in a concise

way, by posing four questions to be answered:

1. Does the dam behave as expected/predicted?

2. Does the dam behave as in the past?

3. Does any trend exist which could impair its safety in the future?

1
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4. Was any anomaly in the behaviour of the dam detected?

The answer to these questions requires the analysis of dam monitoring data two ways:

• In the short term (some times “on-line”), the measurements of some devices are com-

pared to reference values, which correspond to the dam response to the concurring

loads in “normal” or “safe” condition. These reference values and associated predic-

tion intervals above and below them are obtained from some behaviour model, which

accounts for the actual value of the acting loads. Those measurements outside the cited

interval are considered as potential symptoms of anomalous behaviour, hence further

verified.

• In the medium to long term, behaviour models and observed data are analysed to draw

conclusions on the overall dam performance. In particular, the association between

each load and output is observed, and the evolution over time is evaluated.

The result of this analysis is essential in dam safety assessment and decision making, to-

gether with the rest of available information about dam construction and operation, including

visual inspection. Figure 1.1 shows schematically the monitoring data analysis process.

1.2 Motivation

Dam monitoring data analysis, and the answer to the above mentioned questions, require a

behaviour model that provides an estimate on the response of the structure at a given time,

taking into account the acting loads.

Existing models can be classified as follows [73]:

• Deterministic: typically based on the finite element method (FEM), these methods

calculate the dam response on the basis of the physical governing laws.

• Statistical: exclusively based on dam monitoring data.

• Hybrid: deterministic models which parameters have been adjusted to fit the observed

data.

• Mixed: comprised by a deterministic model to predict the dam response to hydrostatic

pressure, and a statistical one to consider deformation due to thermal effects.

Numerical models based on the FEM provide useful estimates of dam displacements and

stresses, but are subject to a significant degree of uncertainty in the characterisation of

the materials, especially with respect to the structural behaviour of the foundation and the

thermal evolution of the dam body in concrete (particularly arch) dams. Other assumptions
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Figure 1.1: Flow diagram of dam monitoring data analysis.

and simplifications have to be made, regarding geometry and boundary conditions. These

tools are essential during the initial stages of the life cycle of the structure, provided that

not enough data are available to build data-based predictive models. However, their results

are often not accurate enough for a precise assessment of dam safety.

This is more acute when dealing with determined variables such as leakage in concrete

dams and their foundations, due to the intrinsic features of the physical process, which

is often non-linear [14], and responds to threshold and delayed effects [71], [41]. Numerical

analysis cannot deal with such a phenomenon, because comprehensive information about the

location, geometry and permeability of each fracture would be needed. Other phenomena

are also difficult to reproduce with numerical models, such as the beginning of failure by

concrete plasticising or cracking, although tools have been developed for this purpose [49].
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These drawbacks are shared by all approaches that make use of a FEM model: deter-

ministic, hybrid and mixed.

Many of the dams in operation have a number of monitoring devices that record the

evolution of various indicators such as displacements, leakage flow or pore water pressure,

among others. Although there are still many dams with few observed data, there is a clear

trend towards the installation of a larger number of devices with higher data acquisition

frequency [33]. As a result, there is an increasing amount of information on dam performance.

Statistical tools employed in regular engineering practice for dam monitoring data anal-

ysis are relatively simple. They are frequently limited to graphical exploration of the time

series of data [46], along with simple statistical models [33], [83]. The hydrostatic-season-

time (HST) model [81] is the most widely applied, and the only generally accepted by

practitioners.

HST is based on multiple linear regression considering the three most influential external

variables: hydrostatic load, air temperature and time. It often provides useful estimations of

displacements in concrete dams [75], and does not require air temperature time series data

(it is assumed to follow a constant yearly cycle). Moreover, the resulting model is easily

interpretable, since the contribution of each input is assumed to be cumulative.

Nonetheless, HST also features conceptual limitations that damage the prediction accu-

racy [75] and may lead to misinterpretation of the results [1]. For example, it is based on

the assumption that the hydrostatic load and the temperature are independent, whereas it

is well known that they are coupled, since the thermal field is influenced by the the water

temperature in the upstream face [67]. On another note, it lacks flexibility, since the func-

tions have to be defined beforehand, and thus may not represent the true behaviour of the

structure [71]. Also, they are not well-suited to model non-linear interactions between input

variables [14].

In the recent years, non-parametric techniques have emerged as an alternative to HST

for building data-based behaviour models [61], e.g. support vector machines (SVN) [55],

neural networks (NN) [42], adaptive neuro-fuzzy systems (ANFIS) [17], among others [61].

In general, these tools are more suitable to model non-linear cause-effect relations, as well

as interaction among external variables, as that previously mentioned between hydrostatic

load and temperature. On the contrary, they are typically more difficult to interpret, what

led them to be termed as “black box” models (e.g. [3]). As a consequence, the vast majority

of related works are limited to the verification of their prediction accuracy when estimating

determined output variables (e.g. [56], [62], [38]).

Therefore, dam engineers face a dilemma: the HST model is widely known and used and

easily interpretable. However, it is based on some incorrect assumptions, and its accuracy

can be increased. On the other hand, more flexible and accurate models are available, but

they are more difficult to implement and analyse.

The research aims at solving this issue by exploring the possibilities of machine learning
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algorithms to improve dam monitoring data analysis and safety assessment.

1.3 Objectives

The main objective is the development of a methodology for dam behaviour analysis based

on machine learning, efficient in early detection of anomalies. To achieve that goal, the

following specific objectives need to be fulfilled:

1. Literature review on data-based models for dam monitoring data analysis,

with focus on the following topics:

• Critical analysis of relevant articles and conference proceedings.

• Identification of areas to improve in the field of dam monitoring data interpreta-

tion.

• Revision of the statistical and machine learning tools with potential for application

to the problem to be solved.

• Verification of the applicability of each tool to predict output variables of different

nature.

• Analysis of the key methodological issues as regards the implementation of pre-

dictive models in day-to-day practice.

• Selection of a group of algorithms for a more detailed analysis.

2. Algorithm selection, in terms of accuracy, flexibility, robustness and ease of imple-

mentation.

3. Analysis of the effect of the training set size, to have an estimate on the time

period required from the first filling before having the possibility of employing some

data-based behaviour model.

4. Identification of tools for interpretation of ML models, i.e., analysis of the influ-

ence of each input on dam response and retrospective assessment of dam performance

to detect potential changes in time.

5. Implementation of the methodology in a software tool for anomaly detection,

with the following functionalities:

• Accuracy: the better the prediction of the model fits the actual response of the

dam, the more reliable the conclusions drawn from its interpretation [9]. More-

over, a more accurate model will result in a narrower prediction interval which in

turn would allow earlier anomaly detection.
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• Flexibility: each dam typology presents different characteristics in terms of the

most influential loads, the strength and nature of their association with dam

response, the most representative output variables and the potential failure modes,

among other aspects. The behaviour model should ideally be able to adapt to

highly different situations.

• Interpretability: model analysis should throw information on the nature and in-

tensity of the association between each input and response, and in particular on

the time effect, i.e., whether dam performance changed over time, and which way.

• Ability to detect anomalies: a criterion to determine a prediction interval around

the model prediction is required, to classify upcoming observations of different

output variables as “normal” or “potentially anomalous”.

• Ability to identify extraordinary situations due to load combination.

• A graphical user interface for its practical application, including tools for data

exploration, model fitting and anomaly detection.

1.4 Publications

This thesis is presented as a compendium of articles, previously published in indexed scientific

journals. The list and the association with this document follows:

Chapter 2 contains a summary of the articles related to the literature review:

• Salazar, F., Morán, R., Toledo, M.Á., Oñate, E. Data-Based Models for the Pre-

diction of Dam Behaviour: A Review and Some Methodological Considerations.

Archives of Computational Methods in Engineering (2015). doi:10.1007/s11831-

015-9157-9

• Salazar, F., Toledo, M.Á., Discussion on “Thermal displacements of concrete

dams: Accounting for water temperature in statistical models”, Engineering

Structures, Available online 13 August 2015, ISSN 0141-0296,

http://dx.doi.org/10.1016/j.engstruct.2015.08.001.

Chapter 3 is a summary of the article dealing with algorithm selection, based on a com-

parison of candidate techniques:

• Salazar, F., Toledo, M.Á., Oñate, E., Morán, R. An empirical comparison of ma-

chine learning techniques for dam behaviour modelling, Structural Safety, Volume

56, September 2015, Pages 9-17, ISSN 0167-4730,

http://dx.doi.org/10.1016/j.strusafe.2015.05.001.
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Chapter 4 focuses on model interpretation, and is associated with the fourth paper in the

compendium:

• Salazar, F., Toledo, M.Á., Oñate, E., Suárez, B. Interpretation of dam deforma-

tion and leakage with boosted regression trees, Engineering Structures, Volume

119, 15 July 2016, Pages 230-251, ISSN 0141-0296,

http://dx.doi.org/10.1016/j.engstruct.2016.04.012.

The overall methodology for anomaly detection is described in Chapter 5. It takes into

account the conclusions of the precedent works, and is the subject of another article currently

under review.

Finally, part of the work was presented in the following conferences:

Salazar, F., Oñate, E., Toledo, M.Á. Posibilidades de la inteligencia artificial en el análisis

de auscultación de presas. III Jornadas de Ingenieŕıa del Agua, Valencia (Spain),

October 2013 (in Spanish).

Salazar, F., Morera, L., Toledo, M.Á., Morán, R., Oñate, E. Avances en el tratamiento y

análisis de datos de auscultación de presas. X Jornadas Españolas de Presas, Spancold,

Sevilla (Spain), February 2015 1 (in Spanish).

Salazar, F., Oñate, E., Toledo, M.Á. Nuevas técnicas para el análisis de datos de aus-

cultación de presas y la definición de indicadores cuantitativos de su comportamiento,

IV Jornadas de Ingenieŕıa del Agua, Córdoba (Spain), October 2015.

Salazar, F., González, J.M., Toledo, M.Á., Oñate, E. A methodology for dam safety evalua-

tion and anomaly detection based on boosted regression trees. 8th European Workshop

on Structural Health Monitoring, Bilbao (Spain), July 2016.

A copy of the post-print version of the articles is included in Appendix A, while the works

presented in conferences form Appendix B.

Therefore, Chapters 2, 3 and 4 include a summary of the methods and results of the

correspondent articles, while Chapter 5 contains the final part of the research, in which the

previous results were taken into account.

1Section 3 of this paper was carried out by León Morera, thus is not part of this thesis
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2
State of the art review

2.1 Introduction

A literature review was performed on a selection of articles and conference proceedings

featuring examples of application of data-based models in dam behaviour modelling. This

chapter includes a summary of this analysis.

In what follows, Y ∈ R stands for some response variable (e.g. displacement, leakage flow,

crack opening, etc.), which is estimated in terms of a set of inputs Xj: Y ≈ Ŷ = F (Xj). The

observed values are denoted as (xji , yi), i = 1, ..., N , where N is the number of observations

and j = 1 . . . p refer to the dimensions of the input space.

2.2 Statistical and machine learning techniques used

in dam monitoring analysis

2.2.1 Models based on linear regression

The Hydrostatic-Season-Time model (HST)

Linear regression is the simplest statistical technique, appropriate to reproduce certain phe-

nomena. It is also the basis of the most popular data-based behaviour model in dam engi-

neering: the Hydrostatic-Season-Time (HST). It was first proposed by Willm and Beaujoint

in 1967 [81].
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It is based on the assumption that the dam response is a linear combination of three

effects:

Ŷ = F1 (h) + F2 (s) + F3 (t) (2.1)

• A reversible effect of the hydrostatic load which is commonly considered in the form

of a fourth-order polynomial of the reservoir level (h) ([73], [5], [71]):

F1 (h) = a0 + a1h+ a2h
2 + a3h

3 + a4h
4 (2.2)

• A reversible influence of the air temperature, which is assumed to follow an annual

cycle. Its effect is approximated by the first terms of the Fourier transform:

F2 (s) = a5cos(s) + a6sen(s) + a7sen
2(s)+

a8sen(s)cos(s)
(2.3)

where s = 2πd/365.25 and d is the number of days since 1 January.

• An irreversible term due to the evolution of the dam response over time. A combination

of monotonic time-dependant functions is frequently considered. The original form is

[81]:

F3 (t) = a9log(t) + a10e
t (2.4)

The model parameters a1...a10 are adjusted by the least squares method: the final model

is based on the values which minimise the sum of the squared deviations between the model

predictions and the observations.

The main advantages are:

• It frequently provides useful estimations of displacements in concrete dams [75].

• It is simple and thus easily interpretable: the effect of each external variable can be

isolated in a straightforward manner, since they are assumed to be cumulative.

• Since the thermal effect is considered as a periodic function, the time series of air

temperature are not required. This widens the possibilities of application, as only the

reservoir level variation needs to be available to build an HST model.

• It is well known by practitioners and frequently applied in several countries [75].

It also features relevant limitations:

• The functions have to be defined beforehand, and thus may not represent the true

behaviour of the structure [71].
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• The governing variables are supposed to be independent, although some of them have

been proven to be correlated [74].

• They are not well-suited to model non-linear interactions between input variables [14].

Several alternatives have been proposed to overcome these shortcomings. Penot et al.

[50] introduced the HSTT method, in which the thermal periodic effect is corrected according

to the actual air temperature.

Related approaches also based on linear regression were applied in dam safety, often by

means of the addition of further input variables following some heuristics or after a trial-and-

error process [42], [14], [71], [83], [10]. In all cases, the need to make a priori assumptions

about the model remains, although variable selection procedures have also been proposed,

such as Stojanovic et al. [72], who combined greedy MLR with variable selection by means

of genetic algorithms (GA).

Consideration of delayed effects

It is well known that dams respond to certain loads with some delay [41]. The most typical

examples are the change in pore pressure in an earth-fill dam due to reservoir level variation

[6] and the influence of the air temperature in the thermal field in a concrete dam body [71].

Several alternatives have been proposed to account for these effects. The most popular

is based on an enrichment of the linear regression by including moving averages or gradients

of some explanatory variables in the set of predictors. Guedes and Coelho [27] predicted the

leakage flow on the basis of the mean reservoir level over the course of a five-days period.

Sánchez Caro [64] included the 30 and 60 days moving average of the reservoir level in the

conventional HST formulation to predict the radial displacements of El Atazar Dam. Further

examples are due to Popovici et al. [53] and Crépon and Lino [15].

A more formal alternative to conventional HST to account for delayed effects was pro-

posed by Bonelli [7], [5]. It was intended to account for the delayed response of an arch

dam in terms of the temperature field, with the final aim of predicting radial displacements.

Lombardi et al. [40] suggested an equivalent formulation, also to compute the thermal re-

sponse of the dam to changes in air temperature. Although the formulation differs from a

multiple linear regression, its numerical integration leads to a predictive model which is a

linear combination of:

• the value of the predictors at ti and ti−1.

• the value of the output variable at ti−1.

which is the conventional form of a first order auto-regressive exogenous (ARX) model.

This is the most enriched version of multiple linear regression, where predictors of different

types are combined. This gives greater flexibility to the algorithm to adapt to different
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situations or response variables. By contrast, the number of potential inputs can become

very large, which generally leads to the need for some variable selection procedure. For

example, Piroddi and Spinelli [52] applied a specific algorithm for selecting 11 out of 40

predictors considered. Principal component analysis (PCA) was also employed for variable

selection (e.g. [44], [13], [14]).

A further drawback of linear regression with many input variables is that model inter-

pretation becomes difficult, since the contribution of each predictor is harder to isolate.

Moreover, the use of the previous (lagged) value of the output to calculate a predic-

tion for current record may induce to question a) whether the observed previous value or

the precedent prediction should be used, and b) whether the model parameters should be

readjusted at every time step.

In addition, current and previous values of response variables different from the target

variable (e.g. radial displacements or leakage) can be considered as inputs. They implicitly

encompass information from unrecorded or unknown phenomena, so the resulting model

will probably be more accurate. However, it can also “learn” the anomalous behaviour and

consider it as normal, in which case it would be inappropriate to detect anomalies.

The higher accuracy obtained by increasing the information given to the model invites

exploring the utility of this approach, keeping their limitations in mind.

2.2.2 Machine learning based models

Among the non-conventional data-based algorithms, neural networks (NNs) are by far the

most popular in the field of dam monitoring data analysis. NN models are flexible, and allow

modelling complex and highly non-linear phenomena. Most of the published works employ

the conventional multi-layer perceptron (MLP) and some sigmoid as the activation function.

These models often result in greater accuracy than MLR, due to the higher flexibility.

However, the results are highly dependent on some issues to be determined by the user:

1. The network architecture, i.e., number of layers and perceptrons in each layer, which

is not known beforehand. Some authors focus on the definition of an efficient algo-

rithm for determining an appropriate network architecture [66], whereas others use

conventional cross-validation [42] or a simple trial and error procedure [76].

2. The training process, which may reach a local minimum of the error function. The

probability of occurrence of this event can be reduced by introducing a learning rate

parameter [76].

3. The stopping criterion, to avoid over-fitting. Various alternatives are suitable for solv-

ing this issue, such as early stopping and regularisation [28].
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The fitting procedures greatly differ among authors. While Simon et al. [71] trained an

MLP with three perceptrons in one hidden layer for 200,000 iterations, Tayfur et al. [76]

used regularisation with 5 hidden neurons and 10,000 iterations. Neither of them followed

any specific criterion to set the number of neurons. For his part, Mata [42] tested NN

architectures with one hidden layer having 3 to 30 neurons on an independent test data

set. He repeated the training of each NN model 5 times with different initialisation of the

weights.

It can be concluded that NNs share some of the target features (flexibility, accuracy), but

lack ease for implementation and robustness. Model interpretation is not straightforward,

and the results depend on the initialisations, so several models need to be trained and their

results averaged to increase robustness. Moreover, only numerical inputs can be considered,

which need to be normalised for model fitting (and de-normalised afterwards).

Other ML approaches were also applied in dam safety, such as Adaptive neuro-fuzzy

systems (ANFIS) ([56], [82]), Support Vector Machines (SVM) ([12], [55]), or K-nearest

neighbours (KNN) ([68]). They mostly share the mentioned properties of NNs: greater

flexibility and accuracy, more difficult interpretation and potential over-fitting.

2.3 Methodological issues

Although each algorithm has its peculiarities, they all need to face intrinsic aspects of the

problem to be solved, which can be analysed independently of the selected technique. Some

of them have been mentioned before as variable selection. Others are specific to data-based

prediction tasks, and in particular to the dam behaviour problem.

2.3.1 Input selection

The vast majority of statistical and ML algorithms are highly dependent on the inputs

considered, which results in a need for input variable selection. The issue has arisen in

combination with the use of NN [18], [57], [35], [39], [48], ARX [52], MLR [72] and ANFIS

models [56].

The selection of predictors can be useful to reduce the dimensionality of the problem

(essential for ARX models), as well as to facilitate the interpretation of the results.

The criterion to be used depends on the type of data available, the main objective of

the study (prediction or interpretation), and the characteristics of the phenomenon to be

modelled. Engineering judgement is thus essential to make these decisions.

By contrast, some ML algorithms are insensitive to the presence of highly-correlated or

uninformative predictors, such as those based on decision trees. Boosted regression trees

(BRTs) and random forests (RFs) stand out among those included in this category, though

they are relatively new and unknown for most dam engineers.
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2.3.2 Model interpretation

There is an obvious interest in model interpretation to analyse the effect of each input on

dam response, once the parameters have been fitted. This contributes to answer the first

question posed by Lombardi [40]: does the dam behave as expected/predicted? For example,

an arch dam is expected to move in the downstream direction in front of a combination of

high hydrostatic load and low temperature.

The evolution over time is particularly relevant, since it is related to the second and third

questions [40]:

• Does the dam behave as in the past?

• Does any trend exist which could impair its safety in the future?

The effect of time, hydrostatic load and temperature can be easily obtained from an HST

model, since it is based on the assumption that they are additive. However, it was already

mentioned that they are actually correlated. Paraphrasing Breiman [9], when a pre-defined

model is fit to data, “the conclusions drawn are about the model’s mechanism, not about

nature’s mechanism 1. Moreover, “if the model is a poor emulation of nature, the conclusions

may be wrong”.

Therefore, the interpretation of a more accurate predictive model will offer more reliable

conclusions. The price to be paid for the greater flexibility and accuracy is the more difficult

interpretation.

The vast majority of published studies are limited to the analysis of model accuracy for

the output variable under consideration, as compared to HST. Only a few come to deal with

model interpretation, that is, to analyse the strength and nature of the contribution of each

action to the dam response. They are often limited to cases where a low number of inputs

are considered (e.g. [42], [65], [71], [53]).

2.3.3 Training and validation sets

Accuracy is the main (and most obvious) measure of model performance, i.e. how well the

model predictions fit to the observed data. However, it is well known that an increase in the

number of parameters results in models more susceptible to over-fit. The higher complexity

of ML algorithms has a similar effect as regards over-fitting. Hence, model accuracy must

be computed properly.

It has been proven that the prediction accuracy of a data-based model, measured on

the training data, is an overestimation of its overall performance [2]. Therefore, part of

the available data needs to be reserved for model accuracy estimation (validation set). In

1Breiman employs “nature” to denote any phenomenon partially understood, which associates the pre-

dictor variables to the outcome. In this research, “nature’s mechanism” is homologous to “dam behaviour”
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principle, any sub-setting of the available data into training and validation sets is acceptable,

provided the data are independent and identically distributed (i.i.d.).

This is not the case in dam monitoring series, which are time-dependant in general.

Moreover, the amount of available data is limited, what in turn limits the size of the training

and validation sets. Ideally, both should cover all the range of variation of the most influential

variables.

On another note, a minimum amount of data is necessary to build a predictive model

with appropriate generalisation ability. Some authors estimate the minimum period to be 5

[73] to 10 years [16], though it is case-dependent.

A further problem for the application of data-based models is that transient phenomena

take place during the first years of operation [40]. Therefore, data from that period should

be analysed in detail, since it might not be representative of subsequent dam performance.

In spite of these issues, many authors use the training set for computing model generali-

sation capability, or use a small sample for validation. This raises doubts about the actual

accuracy of these models, in particular of those more strictly data-based, such as NN or

SVM.

The deviation between predictions and observations is essential for dam behaviour as-

sessment [40]. Moreover, the prediction intervals are typically based on some multiple of the

standard deviation of the residuals. Hence, the proper estimation of model accuracy, over

an adequate validation set, is fundamental from a practical viewpoint.

This topic is covered in depth in Chapter 5.

2.3.4 Practical implementation

Despite the increasing amount of literature on the use of advanced data-based tools, very

few examples described their practical integration in dam safety analysis. The vast majority

were limited to the model accuracy assessment, by quantifying the model error with respect

to the actual measured data.

The information provided by reliable automated systems, based on highly accurate mod-

els, can be a great support for decision making regarding dam safety [33], [32].

To achieve that goal, the outcome of the predictive model must be transformed into a

set of rules that determine whether the system should issue a warning. The actions to be

taken need to be defined on a case-by-case basis, taking into consideration the relevance of

each device as regards the overall dam safety [40].

Actually, an overall analysis of the most representative instruments is recommended,

to identify (and discard) any isolated reading error. Cheng and Zheng [12] proposed a

procedure for calculating normal operating thresholds (“control limits”), and a qualitative

classification of potential anomalies: a) extreme environmental variable values, b) global

structure damage, c) instrument malfunctions and d) local structure damage.
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A more accurate analysis could be based on the consideration of the major potential

modes of failure to obtain the corresponding behaviour patterns and an estimate of how

they would be reflected on the monitoring data. Mata et al. [43] employed this idea to

develop a system that takes the measurements of several devices and classifies them as

correspondent to normal or accidental situation. This scheme can be easily implemented in

an automatic system, though requires a detailed analysis of the possible failure modes, and

their numerical simulation to provide data with which to train the classifier.

2.4 Conclusions

There is a growing interest in the application of innovative tools in dam monitoring data

analysis. Although only HST is fully implemented in engineering practice, the number of

publications on the application of other methods has increased considerably in recent years,

specially NN.

It seems clear that the models based on ML algorithms can offer more accurate estimates

of the dam behaviour than the HST method in many cases. In general, they are more suitable

to reproduce non-linear effects and complex interactions between input variables and dam

response.

However, most of the published works refer to specific case studies, certain dam typologies

or determined outputs. Many focus on radial displacements in arch dams, although this

typology represents roughly 5% of dams in operation worldwide.

A useful data-based algorithm should be versatile to face the variety of situations pre-

sented in dam safety: different typologies, outputs, quality and volume of data available,

among others. Data-based techniques should be capable of dealing with missing values and

robust to reading errors.

These tools must be employed rigorously, given their relatively high number of parameters

and flexibility, what makes them susceptible to over-fit the training data. It is thus essential

to check their generalisation capability on an adequate validation data set, not used for

fitting the model parameters.

The main limitation of these methods is their inability to extrapolate, i.e., to generate

accurate predictions outside the range of variation of the training data. Therefore, before

applying these models for predicting the dam response in a given situation, it should be

checked whether the load combination under consideration lies within the values of the

input variables in the training data set.

From a practical viewpoint, data-based models should also be user-friendly and easily

understood by civil engineering practitioners, typically unfamiliar with computer science,

who have the responsibility for decision making.

Finally, two overall conclusions can be drawn from the review:
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• ML techniques can be highly valuable for dam safety analysis, though some issues

remain unsolved.

• Regardless of the technique used, engineering judgement based on experience is critical

for building the model, for interpreting the results, and for decision making with regard

to dam safety.
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Algorithm Selection

3.1 Introduction

In view of the conclusions of the literature review, a set of ML algorithms were selected for a

detailed comparative analysis. The main features were already known, but there was a need

for testing their appropriateness to build dam behaviour models.

A selection of algorithms were faced to a practical case study, and the results were

compared. Specifically, the following techniques were considered: random forests (RF),

boosted regression trees (BRT), support vector machines (SVM) and multivariate adaptive

regression splines (MARS). Both HST and NN were also used for comparison purposes.

Similar analyses had been previously performed in other fields of engineering, such as the

prediction of urban water demand [29].

3.2 Case study

The data used for the study correspond to La Baells dam. It is a double curvature arch dam,

with a height of 102 m, which entered into service in 1976. The monitoring system records

the main indicators of the dam performance: displacement, temperature, stress, strain and

leakage. The data were provided by the Catalan Water Agency (Agència Catalana de l’Aigua,

ACA), the dam owner, for research purposes. Among the available records, the study focused

on 14 variables: 10 correspond to displacements measured by pendulums (five radial and five
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3. Algorithm Selection

tangential), and four to leakage flow. Several variables of different types were considered in

order to obtain more reliable conclusions. The details of the available data are included in

the article, whereas the location of each monitoring device is depicted in Figure 3.1.

P1D-4

AFMD50PR

AFMI90PR
550 m.a.s.l.

590 m.a.s.l.

610 m.a.s.l.

AFTOTMD AFTOTMI

P5D-1P1D-1P6I-1

P2I-4

628 m.a.s.l.

Figure 3.1: La Baells Dam geometry and location of the monitoring devices considered. Left:

view from downstream. Right: highest cross-section.

The specific features of dam monitoring data analysis were taken into account to design

the experiment. In all cases, approximately 40% of the records (from 1998 to 2008) were

left out as the testing set. This is a large proportion compared with previous studies, which

typically leave 10-20 % of the available data for testing [56], [42], [68]. A larger test set was

selected in order to increase the reliability of the results.

On another note, it is well known that the early years of operation often correspond to a

transient state, non-representative of the quasi-stationary response afterwards [40]. In such

a scenario, using those years for training a predictive model would be inadvisable. This

might lead to question the optimal size of the training set in achieving the best accuracy

([16], [14]). The available time series for La Baells dam span from 1979 to 2008. To analyse

this issue, four different training sets were chosen to fit each model, spanning five, 10, 15 and

18 years of records. In all cases, the training data used correspond to the closest time period

to the test set (e.g. periods 1993-1997, 1988-1997, 1983-1997, and 1979-1997, respectively).

The predictor set included inputs related to the environmental actions: air temperature

and hydrostatic load. A time-dependent term was also added, to account for possible vari-

ations in dam behaviour over the period of analysis. Several variables derived from those

actually measured at the dam site (reservoir level and the average daily temperature) were

also included. They are listed in Table 3.2.

The variable selection was performed according to dam engineering practice. Both dis-

placements and leakage are strongly dependant on hydrostatic load. Air temperature is well

known to affect displacements, in the form of a delayed action. It may also influence leakage

flow (as Seifart et al. reported for Itaipú Dam [70]), although it is uncertain (Simon et al.

observed no dependency [71]). Both the air temperature and some moving averages were
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3.2. Case study

Code Group Type Period (days)

Level Hydrostatic load Original -

Lev007

Hydrostatic load Moving average

7

Lev014 14

Lev030 30

Lev060 60

Lev090 90

Lev180 180

Tair

Air temperature Moving average

1

Tair007 7

Tair014 14

Tair030 30

Tair060 60

Tair090 90

Tair180 180

Rain

Rainfall Accumulated

1

Rain030 30

Rain060 60

Rain090 90

Rain180 180

NDay
Time Original

-

Year -

Month Season Original -

n010

Hydrostatic load Rate of variation

10

n020 20

n030 30

Table 3.1: Predictor variables considered.

included in the analysis.

A relatively large set of predictors was used to capture every potential effect, overlooking

the high correlation among some of them. The comparison sought to be as unbiased as

possible, thus all the models were built using the same inputs1 and data pre-process (only

normalisation was performed when necessary). While it is acknowledged that this proce-

dure may favour the techniques that better handle noisy or scarcely important variables,

theoretically all learning algorithms should discard them automatically during the model

1with the exceptions of MARS and HST, as explained in the article
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3. Algorithm Selection

Type Target RF BRT NN SVM MARS HST

Radial (mm)

P1DR1 1.70 0.93 0.58 0.75 2.32 1.35

P1DR4 1.05 0.71 0.68 0.76 1.50 1.37

P2IR4 0.94 0.97 1.02 1.05 0.85 1.12

P5DR1 0.86 0.70 0.64 1.35 0.89 0.88

P6IR1 1.47 0.69 0.72 0.60 1.67 0.91

Tangential (mm)

P1DT1 0.24 0.25 0.52 0.35 0.55 0.47

P1DT4 0.15 0.15 0.18 0.19 0.22 0.20

P2IT4 0.13 0.11 0.13 0.12 0.14 0.10

P5DT1 0.40 0.22 0.19 0.38 0.47 0.18

P6IT1 0.28 0.27 0.39 0.94 0.39 0.51

Leakage (l/min)

AFMD50PR 1.24 0.90 2.11 4.25 1.74 2.24

AFMI90PR 0.18 0.15 0.07 0.33 0.25 0.28

AFTOTMD 1.82 1.60 3.04 5.38 1.85 2.60

AFTOTMI 0.91 0.42 0.83 1.49 1.49 1.11

Table 3.2: MAE for each output and model, fitted on the whole training set (18 years). The

values within 10% from the minimum are highlighted in bold, and the minimum MAE are

also underlined. The results correspond to the test set.

fitting.

3.3 Results and discussion

Table 3.2, contains the mean absolute error (MAE) for each target and model, computed as:

MAE =

∑N
i=1

∣∣yi − F
(
xjk
)∣∣

N
(3.1)

where N is the size of the training (or test) set, yi are the observed outputs and F (xi) the

predicted values.

It can be seen that models based on ML techniques mostly outperform the reference

HST method. NN models yield the highest accuracy for radial displacements, whereas BRT

models are better on average both for tangential displacements and leakage flow. It should

be noted that the MAE for some tangential displacements is close to the measurement error

of the device (±0.1mm).

The effect of the training set size is depicted in Figure 3.2, where the model accuracy is
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3.3. Results and discussion

measured in terms of the average relative variance (ARV) [79]:

ARV =

∑N
i=1

(
yi − F

(
xjk
))2

∑N
i=1(yi − ȳi)

2
=
MSE

σ2
(3.2)

where ȳ is the output mean. Given that ARV denotes the ratio between the mean squared

error (MSE) and the variance (σ2), it accounts both for the magnitude and the deviation of

the target variable. Furthermore, a model with ARV=1 is as accurate a prediction as the

mean of the observed outputs.

Although the use of the whole training set is optimal for six out of 14 targets, significant

improvements are reported in some cases by eliminating some of the early years. Surprisingly,

for two of the outputs, the lower MAE corresponds to a model trained over five years, which

in principle was assumed to be too small a training set. MARS is especially sensitive to the

size of the training data. The MARS models trained on five years improve the accuracy for

P1DR4 and P6IT1 by 13.3 % and 14.8 % respectively.
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3. Algorithm Selection

RF BRT NN MARS SVM HST
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Figure 3.2: ARV for each model and training set size. Models with ARV > 1.0 are less

accurate than the sample mean. The average values for each output, algorithm and training

set size are plotted with black dots. Note the logarithmic scale of the vertical axis. Top:

radial displacements. Middle: tangential displacements. Bottom: leakage flow. Some HST

models trained over 5 years are out of the range of the vertical axis, thus highly inaccurate.

The results correspond to the test set.
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3.4. Conclusions

These results strongly suggest that it is advisable to select carefully the most appropriate

training set size. This should be done by leaving an independent test set.

3.4 Conclusions

It was found that the accuracy of currently applied methods for predicting dam behaviour

can be substantially improved by using ML techniques.

The sensitivity analysis to the training set size shows that removing the early years of

dam life cycle can be beneficial. In this work, it has resulted in a decrease in MAE in some

cases (up to 14.8%). Hence, the size of the training set should be considered as an extra

parameter to be optimised during training.

Some of the techniques analysed (MARS, SVM, NN) are more susceptible to further

tuning than others (RF, BRT), given that they have more hyper-parameters and are more

sensitive to the presence of correlated or uninformative inputs. As a consequence, the former

might have a larger margin for improvement than the latter.

However, both detailed tuning and careful variable selection increase the computational

cost and complicate the analysis. Since the objective is the extension of these techniques for

the prediction of a large number of variables of many dams, the simplicity of implementation

is an aspect to be considered in model selection.

In this sense, BRT showed to be the best choice: it was the most accurate for five of the 14

targets; easy to implement; robust with respect to the training set size; able to consider any

kind of input (numeric, categorical or discrete), and not sensitive to noisy and low relevant

predictors.
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4
Model Interpretation

4.1 Introduction

As a result of the comparative analysis, BRT was selected as the most appropriate tool

to achieve the research objectives. In this stage, the possibilities of interpretation were

investigated to:

1. Identify the effect of each external variable on the dam behaviour

2. Detect the temporal evolution of the dam response

3. Provide meaningful information to draw conclusions about dam safety

For this purpose, the same data from La Baells Dam were employed, though the analysis

focused on 12 variables: 8 corresponded to radial displacements measured by pendulums

(along the upstream-downstream direction), and four to leakage flow. The location of each

monitoring device is depicted in Figure 4.1.

Since BRT models automatically discard those predictors not associated with the out-

put [24], the initial model considered the same inputs as described in section 3. All the

calculations were performed on a training set covering the period 1980-1997, and the model

accuracy was assessed for a validation set correspondent to the years 1998-2008.
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P1DR4

P6IR3 P5DR3

AFMD50PR

AFMI90PR
550 m.a.s.l.

590 m.a.s.l.

610 m.a.s.l.

AFTOTMD AFTOTMI

P5DR1P1DR1P6IR1

P2IR4

P2IR1
628 m.a.s.l.

Figure 4.1: Geometry and location of the targets considered for model interpretation. Left:

view from downstream. Right: highest cross-section.

4.2 Methods

4.2.1 Boosted regression trees

BRT models are built by combining two algorithms: a set of single models are fitted by

means of decision trees [8], and their output is combined to compute the overall prediction

using boosting [23]. For the sake of completeness, a short description of both techniques

follow, although excellent introductions can be found in [58], [37], [21], [3].

Regression trees

Regression trees were first proposed as statistical models by Breiman et al. [8]. They are

based on the recursive division of the training data in groups of “similar” cases. The output

of a regression tree is the mean of the output variable for the observations within each group.

When more than one predictor is considered (as usual), the best split point for each is

computed, and the one which results in greater error reduction is selected. As a consequence,

non-relevant predictors are automatically discarded by the algorithm, as the error reduction

for a split in a low relevant predictor will generally be lower than that in an informative one.

Other interesting properties of regression trees are:

• They are robust against outliers.

• They require little data pre-processing.

• They can handle numerical and categorical predictors.

• They are appropriate to model non-lineal relations, as well as interaction among pre-

dictors.
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4.2. Methods

By contrast, regression trees are unstable, i. e., small variations in the training data lead

to notably different results. Also, they are not appropriate for certain input-output relations,

such as a straight 45◦ line [21].

Boosting

Boosting is a general scheme to build ensemble prediction models [23]. It is based on the gen-

eration of a (frequently high) number of simple models (also referred to as “weak learners”)

on altered versions of the training data. The overall prediction is computed as a weighted

sum of the output of each model in the ensemble. The rationale behind the method is that

the average of the prediction of many simple learners can outperform that from a complex

one [69].

The idea is to fit each learner to the residual of the previous ensemble. The main steps

of the original boosting algorithm when using regression trees and the squared-error loss

function can be summarised as follows [45]:

1. Start predicting with the average of the observations (constant):

F0

(
Xj
)

= f0
(
Xj
)

= ȳi

2. For m = 1 to M

(a) Compute the prediction error on the training set:

ỹi = yi − Fm−1

(
xji
)

(b) Draw a random sub-sample of the training set (Sm)

(c) Consider Sm and fit a new regression tree to the residuals of the previous ensemble:

ỹi ≈ fm
(
Xj
)
, i ∈ Sm

(d) Update the ensemble:

Fm(Xj)⇐ Fm−1(X
j) + fm(Xj)

3. FM is the final model

It is generally accepted that this procedure is prone to over-fitting, because the training

error decreases with each iteration [45]. To overcome this problem, it is convenient to add a

regularization parameter ν ∈ (0, 1), so that step (d) turns into:

Fm(Xj)⇐ Fm−1(X
j) + ν · fm(Xj)
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4. Model Interpretation

Some empirical analyses showed that relatively low values of ν (below 0.1) greatly improve

generalisation capability [23]. In practice, it is common to set the regularisation parameter

and consider a number of trees such that the training error stabilises [58]. Subsequently, a

certain number of terms are pruned using for example cross-validation. This is the approach

employed in this work, with ν = 0.01 and a maximum of 1,000 trees. It was verified that

the training error reached the minimum before adding the maximum number of trees.

Five-fold cross-validation was applied to determine the amount of trees in the final en-

semble. The process was repeated using trees of depth 1 and 2 (interaction.depth), and the

most accurate for each target was selected. The rest of the parameters were set to their

default values [25].

All the calculations were performed in the R environment [54].

Several procedures to interpret ML models, often termed “black box” models, can be

found in the literature. In this work, the relative influence (RI) of each predictor and the

partial dependence plots (PDP) were employed.

4.2.2 Relative influence (RI)

BRT models are robust against the presence of uninformative predictors, as they are dis-

carded during the selection of the best split. Moreover, it seems reasonable to think that the

most relevant predictors are more frequently selected during training. In other words, the

relative influence (RI) of each input is proportional to the frequency with which they appear

in the ensemble. Friedman [23] proposed a formulation to compute a measure of RI for BRT

models based on this intuition. Both the relative presence and the error reduction achieved

are considered in the computation. The results are normalised so that they add up to 100.

Based on this measurement, the most influential variables were identified for each output,

and the results were interpreted in relation to dam behaviour. In order to facilitate the

analysis, the RI was plotted as word clouds [36]. These plots resemble histograms, with

the advantage of being more appropriate to visualise a greater set of variables. The code

representing each predictor was displayed with a font size proportional to its relative influence

with the library “wordcloud” [22].

Furthermore, two degrees of variable selection were applied, based on the RI of each

predictor. First, a BRT model (M1) was trained with all the variables considered (section

5.2.3). Second, the inputs with RI (Xj) > min (RI (Xj)) + sd (RI (Xj)) were selected to

build a new model (M2). This criteria is heuristic and based on the 1-SE rule proposed by

Breiman et al. [8]. Finally, a model with three predictors was generated (M3), featuring

the more relevant variables of each group: temperature, time and reservoir level for radial

displacements, and rainfall, time and level for leakage flows.

These three versions were generated to analyse the effect of the presence of uninformative

variables in the predictor set. Moreover, the simplest model facilitates the analysis, as the
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effect of each action is concentrated in one single predictor.

In this sense, the temporal evolution is particularly relevant for dam safety evaluation,

as it can help to identify a progressive deterioration of the dam or the foundation, which

might result in a serious fault if not corrected.

4.2.3 Partial dependence plots

Multi-linear regression models and HST in particular are based on the assumption that the

input variables are statistically independent, so the prediction is computed as the sum of

their contributions. As a result, the effect of each predictor in the response can be easily

identified, by plotting F (Xj),∀j = 1...p.

This method is not appropriate for BRT models, as interactions among predictors are

accounted for. While this results in more flexibility, it also implies that the identification of

the relation between predictors and response is not straightforward.

Nonetheless, it is possible to examine the predictor-response relationship by means of

the partial dependence plots [23]. This tool can be applied to any black box model, as it is

based on the marginal effect of each predictor on the output, as learned by the model. Let

Xj be the variable of interest. A set of equally spaced values are defined along its range:

Xj = xjk. For each of those values, the average of the model predictions is computed:

F̄
(
xjk
)

=
1

N

N∑

i=1

F
(
xji , x

jc
i

)
(4.1)

where xjci is the value for all inputs other than Xj for the observation i.

Similar plots can be obtained for interactions among inputs: the average prediction is

computed for couples of fixed xjk, where j takes two different values. Hence, the results can

be plotted as a three-dimensional surface (section 4.3.3). In this work, partial dependence

plots were restricted to the simplest model, which considered three predictors. Therefore,

three 3D plots allowed investigating the pairwise interactions among all the inputs considered

in the simplified model.

4.2.4 Overall procedure

The complete process comprised the following steps:

1. Fit a BRT model on the training data with the variables in table 3.2 (M1).

2. Compute the RI and generate the word cloud.

3. Select the most relevant predictors with the 1-SE rule [8] and fit a new BRT model

(M2).
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4. Build a simple BRT model (M3) with the most influential variable of each group

(temperature, level and time for displacements, and rainfall, level and time for leakage).

5. Generate the univariate and bivariate partial dependence plots for the simplest model.

6. Compute the goodness of fit for each model in both the training and the validation

sets.

4.3 Results

4.3.1 Effect of input selection

Table 4.3.1 contains the error indices for each target. For those models with variable selection,

the predictors are also listed. The results show that BRT efficiently discarded irrelevant

inputs, since the fitting accuracy was similar for each version in most cases (i.e., the presence

of uninformative predictors did not damage the fitting accuracy).
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Train Validation

Target MAE ARV MAE ARV Inputs

P1DR1

0.64 0.03 0.91 0.08 All

0.68 0.03 0.81 0.06 Tair090,Level,NDay,Lev007,Lev014

0.69 0.03 0.78 0.06 NDay,Tair090,Level

P1DR4

0.46 0.03 0.65 0.08 All

0.50 0.03 0.66 0.08 Level,Tair090,NDay,Lev007,Lev014,Lev030

0.51 0.03 0.67 0.08 NDay,Tair090,Level

P2IR1

0.66 0.03 1.03 0.09 All

0.85 0.05 1.09 0.09 Tair090,Level,Lev007,Lev014

0.71 0.04 0.98 0.08 NDay,Tair090,Level

P2IR4

0.48 0.05 0.90 0.14 All

0.61 0.06 0.93 0.14 Level,Tair090,Lev007,Lev014,Lev030

0.53 0.06 0.94 0.16 NDay,Tair090,Level

P5DR1

0.66 0.05 0.82 0.08 All

0.64 0.05 0.87 0.10 Tair060,Level,Tair030

0.83 0.08 0.93 0.11 NDay,Tair060,Level

P5DR3

0.25 0.03 0.47 0.21 All

0.33 0.05 0.55 0.22 Tair060,Level,Tair030

0.31 0.04 0.52 0.24 NDay,Tair060,Level

P6IR1

0.60 0.04 0.80 0.09 All

0.65 0.05 0.78 0.08 Tair060,Tair030,Level,NDay

0.83 0.08 0.85 0.1 NDay,Tair060,Level

P6IR3

0.23 0.02 0.40 0.08 All

0.37 0.05 0.67 0.17 Tair060,Level,Tair030

0.29 0.03 0.43 0.09 NDay,Tair060,Level

AFMD50PR

1.28 0.16 0.93 0.19 All

1.45 0.17 1.36 0.28 Level,Lev014,Lev007

1.16 0.14 1.23 0.48 NDay,Rain090,Level

AFMI90PR

0.08 0.09 0.15 0.51 All

0.08 0.10 0.12 0.45 Lev007,NDay,Level,Lev014,Lev030

0.08 0.10 0.12 0.46 NDay,Rain030,Lev007

AFTOTMD

1.64 0.15 1.67 0.37 All

1.87 0.19 1.73 0.45 Level,Lev007,Lev014

1.69 0.18 1.97 0.52 NDay,Rain180,Level

AFTOTMI

0.41 0.11 0.44 0.40 All

0.44 0.12 0.44 0.42 NDay,Lev060,Lev014,Lev007,Lev030,Lev180,Lev090,Level

0.54 0.18 0.46 0.60 NDay,Rain180,Lev060

Table 4.1: Accuracy of each model and target for the training and validation sets. The

results and inputs considered by the most accurate version are highlighted in bold.

4.3.2 Relative influence

The analysis of the wordclouds of RI allowed identifying some interesting features of La

Baells dam behaviour. As for the radial displacements, (Figure 4.2), the thermal inertia was

observed as higher RI for Tair060 and Tair090 than for Tair (which in fact resulted negligible).

By contrast, the reservoir level at the date of the record was always more influential than

all the moving averages, what reveals an immediate response of the dam to this load.
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P5DR3P5DR1
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Figure 4.2: Word clouds for the radial displacements analysed.

Other conclusions derived from Figure 4.2 are:

• The thermal inertia was lower near the abutments.

• The RI of the temperature with respect to that of the hydrostatic load increased from

the foundation towards the crown, and from the centre to the abutments.

• The dam behaviour is sensibly symmetrical.

The same analysis for the leakage flows revealed a clear different behaviour between the

right (AFMD50PR and AFTOTMD) and the left margins (AFMI90PR and AFTOTMI).

While the former responded mainly to the hydrostatic load, with little inertia, the latter
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AFTOTMIAFTOTMD

AFMD50PR AFMI90PR

Figure 4.3: Word clouds for the leakage measurement locations analysed

showed a remarkable dependence on time, as well as a greater relevance of several rolling

means of reservoir level. Figure 4.3 shows the word clouds for the leakage flows.

The low inertia with respect to the hydrostatic load suggests that most of the leakage

flow comes from the reservoir, while the effect of rainfall is negligible.

4.3.3 Partial dependence plots (PDPs)

The resulting PDPs allowed verifying that the dam “behaved as expected”, in terms of

the first question posed by Lombardi. Figure 4.4 contains the univariate PDP for P1DR1,

which shows that higher hydrostatic load and lower air temperature are associated with

displacement towards downstream and vice-versa.

Similar plots can be generated in 3D, which allow investigating the pairwise interactions

for all the inputs considered (Figure 4.5).

The analysis of the leakage flows (Figure 4.6) confirmed that the time effect was irrelevant

in the right abutment, except by certain erratic behaviour in the first two years and in the

last three. On the contrary, a sharp decrease in leakage flow was revealed around 1983 for

both locations in the left abutment, and a lower decrease in later years.

The shape of the effect of the hydrostatic load is sensibly exponential, with low influence

for reservoir level below 610 m.a.s.l.

The PDPs also provide information to answer the second and third questions, by means

of analysing the partial dependence on time. In the particular case of P1DR1, these plots
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Date Tair090 (ºC) Level (m.a.s.l.)

Figure 4.4: Partial dependence plot for P1DR1. Movement towards downstream correspond

to lower values in the vertical axis, and vice-versa.

Figure 4.5: 3D PDPs for the main acting loads and P1DR1.

AFMD50PR

Rain090

AFMI90PR

Rain030 Lev007

AFTOTMD

Rain180 Lev060

AFTOTMI

Rain180

Figure 4.6: Partial dependence plot for leakage flows.
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Figure 4.7: Contribution of time, temperature and hydrostatic load on P1DR1, as derived

from the interpretation of HST.

show a step around 1991-1992 for the whole ranges of level and temperature, which might

represent some change in dam response (Figures 4.4 and 4.5. This issue was object of further

verification.

First, an HST model was fitted and similarly interpreted (Figure 4.7). The time effect

was a linear trend towards downstream, in contrast with the step suggested by the BRT

model.

On another note, the average reservoir level in the period 1991-1997 was significantly

higher than before 1991, and might be the cause of the step registered in Figures 4.4 and

4.5: it represents a greater displacement towards downstream in the most recent period,

which is consistent with the higher average hydrostatic load.

To clarify the divergence in the results, a new BRT model was fitted to artificial data

generated by plugging actual time series of reservoir level into the HST model, while removing

the time-dependent terms:

ˆP1DR1mod = a1h+ a2h
2 + a3h

3 + a4h
4 + a5h

5 (4.2)

+a8cos(s) + a9sin(s)

+a10sin
2(s) + a11sin(s)cos(s)

The artificial time series data maintains the original reservoir level variation, and thus

the higher load in the 1991-1997 period. Figure 4.8 contains the partial dependence plot for

this BRT model, which clearly shows that the independence of the artificial data with respect

to time was correctly captured. This result confirms that the step in the time dependence

captured by BRT is not a consequence of the higher hydrostatic load in 1991-1997.
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Date Tair090 (ºC) Level (m.a.s.l.)

Figure 4.8: Partial dependence plot for the artificial time-independent data. P1DR1. It

should be noted that time influence is negligible.

4.4 Conclusions

The interpretation of BRT models resulted in meaningful information on dam behaviour and

the effect of each input variable. It allowed verifying that the dam response was in agreement

with intuition (e.g. higher hydrostatic load generated displacement towards downstream),

and isolating the evolution over time.

The observation of the relative influence of each predictor allowed detecting the thermal

inertia of the dam, its symmetrical behaviour, as well as the high variation over time for the

leakage flows in the left abutment.

Moreover, the analysis of the time effect suggested that partial dependence plots based

on BRT models are more effective to identify performance changes, as they are not coerced

by the shape of the regression functions that need to be defined a priori for HST.
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5
Anomaly detection

5.1 Introduction

In the precedent sections, the first three questions posed in Chapter 1 were answered: BRT

models allowed to study the dam response to the main loads, the relevance of each of the

potential inputs, and the evolution over time. The high accuracy of BRTs imply that the

conclusions drawn from the model interpretation are reliable.

However, the main objective of dam safety is to prevent failures, for which anomalies

need to be detected at early stage. This refers to the fourth question: “was any anomaly in

the behaviour of the dam detected?” [40]. The capability of predictive models to identify

anomalies has been much less frequently studied than their accuracy. Mata et al. [43]

developed a model based on linear discriminant analysis for the early detection of developing

failure scenarios. This methodology belongs to the Type 2 among those defined by Hodge

and Austin [30]: the system is trained with both normal and abnormal behaviour data, and

classifies new inputs as belonging to one of those categories. The drawback of this approach

is that the failure mode must be defined beforehand and simulated with sufficient accuracy

to provide the training data. Hence, the system is specific for the failure mode considered.

Jung et al. [34] used a similar approach: abnormal situations were defined based on the

discrepancy between model predictions and observed data. They focused on embankment

dam piezometer data, and only the reservoir level was considered as external variable (al-

though they acknowledge that the rainfall can also be influential). It is not clear whether

this methodology could be applied to other dam typologies or response variables.
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Cheng and Zeng [12] presented a methodology based on the definition of some control

limits, which depend on the prediction error of a regression model. In addition, they pro-

posed a classification of anomalies based on the trend of the deviation and on how the overall

deviance is distributed among the devices considered. It has the advantage of being simul-

taneously applied to a set of devices, although the case study presented is simple and the

test period considered very short (30 days), as compared to the available data (1,555 days).

Other examples of application of advanced tools together with prediction intervals have

been published by Gamse and Oberguggenberger [26], who employed the procedure of prob-

abilistic quality control, Yu et al. [83], based on principal component analysis (PCA), Kao

and Loh [35], who used PCA together with neural networks (NN), Li et al. [38], who con-

sidered the autocorrelation of the residuals and Loh et al. [39], who presented models for

short and long term prediction.

Most of these works follow a conceptually similar methodology: a prediction model is

built, the density function of the residuals is calculated and used to define the prediction

intervals, which are applied to detect anomalies. In all cases, the efficiency is verified by

means of its application to a short period of records. As an exception, Jung et al. [34] and

Mata et al. [43] used abnormal data obtained from finite element models (FEM).

In this Chapter, the results of the previous stages are implemented in a methodology for

early detection of anomalies, with the following innovative features:

• The prediction model is based on boosted regression trees (BRTs), which showed to

be more accurate than other machine learning and statistical tools in previous works

[62].

• Causal, non-causal and auto-regressive models are considered and jointly analysed.

• Artificially-generated data are taken as reference. They were obtained from a FEM

model considering the coupling between thermal and hydrostatic loads. This allows

to identify normal and abnormal behaviour, as observed by some authors ([34], [43]).

In this work, the FEM results are compared to actually observed data to verify their

reliability.

• A methodology is proposed to neglect false anomalies due to the occurrence of ex-

traordinary loads. It is based on the values of the two main actions (thermal and

hydrostatic).

• Three types of anomalies are considered, affecting both to isolated devices and to the

whole structure.

• Although radial displacements in an arch dam were selected for the case study, the

method can be applied to other dam typologies and response variables. Moreover, it
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adapts well to different amount and type of input variables, due to the great flexibility

and robustness of BRTs.

The outputs considered correspond to the same radial displacements employed in Chapter

4 (Figure 4.1).

5.2 Methods

5.2.1 Prediction intervals

As mentioned above, most of the published works on the application of data-based models

in dam monitoring are limited to the assessment of the model accuracy. However, the main

practical utility of these models is the early detection of anomalies, for which it is necessary

to compare the predictions with monitoring readings, and verify whether they fall within a

predefined range. If the residual density function follows a normal distribution, that range

can be defined in terms of the standard deviation of the residuals. For example, Kao and

Loh [35] presented the 99% prediction intervals for models based on neural networks, while

Jung et al. [34] tested 1, 2 and 3 standard deviations of the residuals as the width of the

prediction interval.

Based on the results of a preliminary study [60], the prediction interval was set to

[µ− 2 sdres, µ+ 2 sdres], being µ and sdres the mean and the standard deviation of the

residuals, respectively. Special attention was paid to the determination of a realistic residual

distribution. It is well known that the accuracy of a machine learning prediction model must

be calculated from a data set not used for model fitting [31] (validation set). In the case of

time series, this validation set should be more recent in time than the training data, since in

practice the model is used for predicting a time period subsequent to the training data [2].

The hold-out cross-validation method meets this requirement, with the most recent data

in the hold-out set (Figure 5.1).

Training Validation

Time

Figure 5.1: Hold-out cross-validation scheme.

However, this implies discarding the most recent data for the model fit, which are gener-

ally the most useful, since they represent the most similar behaviour to that to be predicted

(assuming there may be a gradual change in behaviour over time). Moreover, the validation

data may be biased, if they correspond, for instance, to a especially warm (or cold) period.

41



5. Anomaly detection

To overcome these drawbacks while maintaining good estimate of the prediction error,

an approach based on the hold-out cross validation method suggested by Arlot and Celisse

[2] for non-stationary time series data was employed.

The proposed method takes into account the following specific aspects of dam behaviour:

a) changes in the dam-foundation system are generally gradual, and b) dam behaviour models

are typically revised annually, coinciding with the update of safety reports.

Let us consider that a behaviour model is to be fitted at the beginning of year Zi, to

be applied for anomaly detection during that year. The available data corresponds to the

years Z1 . . . Zi−1, with Z1 being the initial year of dam operation. With the simple hold-out

method, a model is fitted with data in years Z1 . . . Zi−2, whose accuracy is evaluated on data

in Zi−1.

In this work, a minimum training period of 5 years was considered. This value was

chosen in view of the results of previous studies [62], and the evolution of model accuracy on

the reference data, as described in section 5.3.2. Then, an iterative process was followed to

reduce potential bias in the loads during Zi−1. A set of predictions is generated as follows:

• For k = 5 . . . i− 2

• Fit a model Mk trained with the period Z1 . . . Zk.

• Compute Rk as the residuals of Mk when predicting year Zk+1.

• Compute the mean (µk) and standard deviation (sdres,k) of Rk

At the end of the process, residuals for a set of models Mk, k = 5 · · · i− 2 are obtained,

with the particularity that they are computed over different time periods, always subsequent

to the training set (Z6 · · ·Zi−1). That is, the amount of observations in the training sample

increases, and are used to predict the following year. The potential bias of some abnormal

loads for one year is compensated by averaging, while a realistic prediction error is achieved,

since it is always based on precedent data. A similar approach was employed by Herrera et

al. to estimate demand in water supply networks, who employed the term growing window

strategy [29].

Additionally, since the model accuracy typically increases as the training data grows,

the actual model accuracy for the application period (year Zi) will be more similar to that

obtained for Zi−1. Hence, Ri−2 is more representative of the expected model performance

for Zi. To account for this issue, the prediction intervals are based on a weighted average

of µk and sdres,k. In particular, the weights for each year decrease geometrically from the

most recent to the first available. A schematic representation of the procedure is included

in Figure 5.2.

Finally, to take advantage of all the available data, a model is fitted with the entire period

Z1 . . . Zi−1, with which the predictions for the following year (Zi) are computed.
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Figure 5.2: Graphical representation of the weighted growing-window cross-validation pro-

cedure. The prediction interval is estimated as a function of the weighted average of the

standard deviation of the residuals for previous years, each one is computed from a model

trained with a different training set.

Since the test set becomes part of the validation period in the subsequent years, the

residuals generated during the application of the model in the test period can be added to

those computed for previous years, so that there is no need to repeat the whole process: the

previous residuals can be employed to obtain the new prediction interval, after updating the

correspondent weights.

5.2.2 Causal and non-causal models

BRT models are robust against the presence of uninformative or highly correlated predictors

[23], [63]. Hence, variable selection is much less influential for tree-based methods than for

other machine learning tools [24]. This property was employed to build BRT models of three

types.

The first is a causal model, as that described in section 3.2, which considers as predictors

those inputs related to air temperature, hydrostatic load and time (Table 3.2). A priori,

a model of this type is expected to detect reading errors and changes in dam behaviour.

However, its accuracy might be improved, since the response of the dam may depend on

variables not considered, such as the maximum and minimum daily temperatures, or the

solar radiation.

The second version is the Non-Causal model. In addition to the predictors described

above, dam response variables were also considered as inputs. This means that each radial

displacement is included in the input set to predict other radial displacements. This version

will in principle give greater precision, since the record from a neighbouring device (e.g.

another station of the same pendulum) implicitly contains the effect of external variables

not considered in the causal version. By contrast, this model might not be able to detect
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anomalies affecting several devices. For example, a slide in a block of a concrete gravity

dam will be reflected in all stations of the correspondent plumb line; therefore, the relation

between the hydrostatic load and the displacement would be abnormal, while the relationship

between several readings of the same pendulum could be normal.

Finally, an auto-regressive with exogenous inputs (ARX) [47] model was also fitted for

each output, where the lagged values of all radial displacements were added to the Non-

Causal model input set1 . Specifically, the response at time ti is estimated based on the

readings at ti−1 and ti−2, both for the variable to predict and other response variables.

One of the objectives of this work is to test the ability of all three models to detect

various types of abnormalities, and draw conclusions for practical purposes.

5.2.3 Case study

As in previous analyses, La Baells arch dam was also selected as the case study (Section

3.2). In this case, the air temperature and the reservoir level time series were considered as

inputs to a FEM model. The results of this model in terms of radial displacements at the

location of the pendulums were extracted and compared to the actual measurements. The

objective was to check that the FEM model could provide realistic data to generate reference

time series of dam behaviour. These artificial data are free from any temporal variation (the

reference numerical model does not vary with time; only environmental loads do).

The dam was considered as a three-dimensional solid discretised in hexahedral serendipity

27-node elements. A portion of the foundation was also included, resulting in a total of 13,029

nodes and 2,530 elements. The thermal and mechanical problems were solved separately on

the resulting finite element mesh (Figure 5.3). The material properties are shown in table

5.2.3.

Property Dam Foundation

Young modulus (N ·m−2) 4.76 · 1010 3.10 · 1010

Poisson ratio 0.25 0.25

Density (kg ·m−3) 2,400 3,000

Thermal conductivity (W ·◦ K−1 ·m−1) 2.4 2.2

Thermal expansion coefficient 10−5 10−5

Specific heat (J · kg−1 ·◦ K−1) 982 950

Table 5.1: Material properties considered in the FEM model

1The ARX model is also non-causal, in the sense that variables with non-causal relation with the outputs

are included as predictors. The acronym ARX was employed to distinguish both models when necessary,

although they are occasionally jointly referred to as “non-causal models”. For the sake of clarity, the

capitalised version (“Non-Causal”) is used to specifically refer to the second model, excluding the ARX.
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(a) Plan view (b) Perspective from upstream

Figure 5.3: FEM model.

For the thermal problem, a transient computation was run over the 1981-2008 period with

time step of 30 days. The temperature was imposed in both dam faces, with different values

for the wet and dry areas. For the boundaries below the reservoir level, the temperature

was considered as equal to that of the water, which in turn was estimated by means of the

Bofang formula [4]. Although it allows accounting for the temperature variation with depth,

a unique value was considered in this work for all the wetted boundaries, equal to that

obtained for 50% depth. For the dry faces, the 30-days moving average of air temperature

was imposed, to take into account the thermal inertia. The result was increased by 2 degrees

to account for the solar radiation, following the approach proposed by Pérez and Mart́ınez

for Spanish dams in the North-East region [51]. The temperature evolution for the first year

was repeated 4 times to ensure that the result was not influenced by the initial conditions.

The mechanical response was assumed to be elastic and instantaneous (without inertia),

hence for each time step, the hydrostatic load correspondent to the actual reservoir level was

applied.

The results of both models (thermal and mechanical) were added, and the displacement

evolution at the location of the monitoring devices were extracted. The model results, which

are generated in global axes, were later transformed to the local axes correspondent to the

radial displacements, as measured by the monitoring devices.

Finally, weekly values were obtained via interpolation, according to the average reading

frequency for the available data.

In addition to radial displacements, also the temperature evolution in the dam body was

compared to observed data from several thermometers embedded in the dam body.

The goodness of fit of the FE model was computed in terms of the mean absolute error

(MAE) (equation 3.1).
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5.2.4 Anomalies

As described in the previous section, the reference time series were those obtained with the

FEM model for the 1980-2008 period, where the boundary conditions and loads correspond

to the reservoir level and air temperature actually measured in the dam site. Three different

types of anomalies were later introduced to modify those data:

• Scenario 1: Progressive breakdown of an isolated device. An increasing value was

added to the reference series, with constant rate (a mm · year-1).

• Scenario 2: The same as scenario 1, though the magnitude of the deviation is constant

(a mm)

• Scenario 3: Imposed displacement of the left abutment. The data for this scenario

were obtained from a modified FEM model representing a hypothetical sliding of the

left abutment. For that purpose, the boundary condition at that region was set to a

mm both in x and y axes (instead of null displacement, as for the reference case).

It is important to note that the anomaly of scenario 3 affects differently to each of the

devices analysed. Since a displacement in the left abutment was imposed, the results in the

left half of the dam body are anomalous. However, those in the right half are not affected.

This can be observed in Figure 5.4, which depicts the displacement field in the dam body

generated by the imposed anomaly with a = 2mm.

|Displacement| (mm)

P6IR3

P6IR1

P2IR1

P2IR4 P1DR4

P1DR1
P5DR1

P5DR3

Right bank Left bank

Figure 5.4: Displacement field resulting from the anomaly in scenario 3. View from down-

stream.

Table 5.2.4 contains the mean absolute deviation between the reference and the anoma-

lous time series for each device for a = 2mm. Since the anomaly in scenario 3 does not affect

to some devices, those values considered as abnormal by the system will be false positives.
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Device MAE (mm) Device MAE (mm)

P1DR1 0.61 P5DR1 1.42

P1DR4 0.52 P5DR3 1.05

P2IR1 0.10 P6IR1 0.02

P2IR4 0.13 P6IR3 0.01

Table 5.2: Discrepancy between the normal displacements, as computed with the FEM

model, and those imposed in scenario 3 for a = 2mm. Mean absolute error (mm)

For each scenario, the performance of the three models considered (causal, Non-Causal

and auto-regressive) was analysed. 4,000 anomalous cases were generated, where the follow-

ing parameters were randomly selected:

• Initial date of abnormal period

• Anomaly scenario

• Output variable (Scenarios 1 and 2)

• Magnitude: 0.5, 1.0 or 2.0 mm · year -1 for scenario 1; 0.5, 1.0 or 2.0 mm for scenario

2; 1.0 or 2.0 mm for scenario 3.

Each anomalous case was presented to all three models to compare their ability for

anomaly detection. This was computed in terms of the detection time (tdet), defined as the

elapsed time from the start of the anomaly until the first observation considered anomalous

by each model, measured in days (Figure 5.5). Since the abnormal period was limited to 1

year, the models which did not detect any anomaly were assigned a tdet value of 365 days.

Moreover, the effectiveness of an anomaly detection system also depends on the number of

false positives (observations considered abnormal by the model, which are actually normal)

and false negatives (abnormal values not detected as such by the model). The two most

commonly used metrics to account for these are precision (equation 5.1) and recall (equation

5.2). The comparison was mainly based on the F2 index 5.3 [34], which jointly considers

precision and recall, giving more importance to the latter.

precision =
true positives

true positives+ false positives
(5.1)

recall =
true positives

true positives+ false negatives
(5.2)

F2 = (1 + 22)
precision · recall

4 · precision+ recall
(5.3)
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However, these indexes are not useful for model performance assessment when analysing

the unaffected devices in scenario 3. In these cases, there are not true positives (all records

are normal, since these devices are not affected by the anomaly). Hence, both precision and

recall equal zero. Nonetheless, it is highly relevant to know whether the proposed models

correctly identify these records within the prediction interval. For that purpose, scenario

3 was analysed by means of the amount of false positives, whose computation depends on

the device. For those in the left half of the dam body (as viewed from upstream), which

are actually anomalous, the observations above the upper limit of the prediction interval are

considered as false positives, since they would imply a deviation towards upstream (while the

actual anomaly corresponds to a displacement in the downstream direction). By contrast,

for the unaffected devices, every record outside the prediction interval is a false positive,

both above the upper limit and below the lower limit of the interval.

5.2.5 Load combination verification

In general, model accuracy is dependent on the values of the input variables. The more

input data available for similar situations to that to be predicted, the more accuracy is to

be expected. In dam behaviour, it will depend on the thermal and hydrostatic loads.

This effect is more important when input values are out of the training data range [20].

In particular, the accuracy of data-based models as BRTs may decrease dramatically when

extrapolating.

Cheng et al. [12] defined a possible abnormal state of the dam (State 3), that “may be

caused by extreme environmental values variables”. In this work, this issue was explicitly

verified, and out-of-range (OOR) instances were considered as potential false positives.

This verification was carried out following an original procedure, specifically designed

for the dam behaviour problem, where there are three main loads: thermal, mechanical

(hydrostatic head) and temporal.

If the behaviour of the dam does not change over time, the importance of time variable

is negligible. This was checked when fitting BRT models to the reference data, which cor-

respond to time-independent dam behaviour. The inclusion of these variables is useful for

retrospective analysis, as confirmed in Chapter 4. In practice, a previously trained model

is employed to predict future values. Hence, it is obvious that the model prediction is an

extrapolation in time axis and thus does not need to be verified.

As for the other two loads (thermal and hydrostatic), the simplest approach would be

to check whether their values for the test period are greater (lower) than the maximum

(minimum) within the training data set. However, that would not consider that both effects

are coupled: the water temperature is different to that of the air, hence the water surface

elevation affects the boundary condition in the upstream dam face and, as a result, conditions

the thermal response of the dam [74].
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Moreover, there is not a widely accepted agreement on what extrapolation is and how to

handle it [20]. In dam behaviour modelling, it seems obvious that a hydrostatic load above

the maximum in the training set is out-of-range. However, a more detailed definition seems

appropriate to account for the “empty space phenomenon” [78], i.e., the existence of areas

without training samples within the range of the inputs.

To account for this issue, a procedure that takes into consideration the combination of

both loads is proposed:

1. The training data are plotted in the (Reservoir level, Air temperature) plane.

2. A two-dimensional density function is computed by means of the kernel density esti-

mation (KDE) method.

3. The training instance with lower density value is localised, and the corresponding

isoline is plotted.

4. The input values for the new data are plotted on the same plane. Those falling outside

the isoline are considered as OOR.

With this procedure, it is taken into account that the predictive accuracy can be poor

for a load combination not previously presented, even though their values, if considered

separately, are within the training range. An example of this issue is presented in Figure

5.5.

5.3 Results and discussion

5.3.1 FEM model accuracy

Figure 5.6 shows the comparison between the observed radial displacements for P1DR1 and

those obtained with the FE model for the period 1994-2008. Results for other outputs are

similar (Table 5.3.1). The FEM model accuracy is comparable to that obtained in previous

Chapters with data-based models 3.2.

As regards the temperature, Figure 5.7 shows the numerical results and the observed

data for 4 thermometers and the January 2007 - June 2008 period. Both the devices and

the time period correspond to the results published by Santillán et al. [67], who employed a

highly detailed thermal model for the same case study.

Since predicting the thermal response is not the main objective of this analysis, relevant

simplifications were employed to generate the reference data (neglecting the variation in wa-

ter temperature with depth, using a relatively large time step). Nonetheless, the temperature

within the dam body was well captured.
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Figure 5.5: Model performance indicators. Left: typical output plot, with the observations

(circles), the predictions (dotted line), and the prediction interval (shaded area). Before the

start of anomaly, some data fall outside the prediction interval (in red). Of those, some are

false positives, whereas others correspond to out-of-range inputs (blue circles), since they

fall in a low-density region in the 2D density plot (right). In this case, a combination of high

temperature and low reservoir level was presented for the first time in dam history.

This, together with the results for displacements, confirm that the resulting data series

mostly reproduce the dam response to the main loads. Therefore, they are representative of

the normal behaviour of the dam and useful to evaluate the ability of the methodology to

detect anomalies.

5.3.2 Prediction accuracy

The performance of all models on the reference data (without anomalies) was first assessed.

The objectives are:

1. Verify the evolution of the prediction accuracy over time

Output MAE (mm) Output MAE (mm)

P1DR1 0.70 P5DR1 0.81

P1DR4 0.65 P5DR3 1.01

P2IR1 1.08 P6IR1 0.96

P2IR4 0.98 P6IR3 0.58

Table 5.3: Deviation between the radial displacements as computed with the FEM and the

actual records for the 1994-2008 period. Mean absolute error
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Figure 5.6: FEM results versus observations for P1DR1

2007-01-01 2008-01-01 2007-01-01 2008-01-01

2007-01-01 2008-01-01 2007-01-01 2008-01-01

Figure 5.7: Comparison between numerical and measured temperature in 4 locations within

the dam body
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2. Check the effect of averaging the standard deviation

3. Compare all models in terms of false positives

4. Evaluate the efficiency of the criterion to detect out-of-range data

For that purpose, the iterative process described in section 5.2.1 was followed, i.e., each

model is re-fitted yearly over an increasing training set, and the prediction interval is up-

dated as a function of the actualised value of the weighted average of the residual standard

deviation. Since the dam-foundation behaviour is time-independent for the reference case,

the variation in model accuracy is due to the increase of training data.

Figure 5.8 shows the evolution of both the raw and the weighted average of the residual

standard deviation for all devices and models. Some conclusions can be drawn:

• As expected, the accuracy of the Non-Causal and ARX models model is higher, since

the non-causal inputs implicitly contain information regarding external variables not

considered in the causal version.

• The inclusion of lagged variables in the ARX model is not relevant, as compared to

the Non-Causal one.

• The raw values show high variance, especially for the causal model, which is eliminated

by averaging

• The time evolution of the weighted standard deviation of the residuals is similar for

all models: a sharp decrease in the first years, followed by quasi-constant behaviour.

Nonetheless, the causal model requires more data to reach the low-slope part of the

curve.

Table 5.3.2 contains the amount of false positives for all targets and models, as well as

those correspondent to out-of-range inputs. Although the prediction interval for the causal

model is wider (due to the higher residual standard deviation), it also generates a greater

quantity of false positives. However, the average amount is low in all cases, as compared

to the total amount of records (1,464). Moreover, the procedure to identify out-of-range

inputs reduces the false positives by 27 % for the causal model and by 45% for both the

non-causal and the ARX. As a result, the mean percentage of false positives is 8.0, 2.8 and

2.6 % respectively. It should be noticed that the results for the non-causal and ARX models

are lower than the theoretical percentage of values outside the interval within 2 times the

standard deviation in a normal distribution (5%).
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Figure 5.8: Time evolution of the prediction accuracy for all models and outputs. Top:

standard deviation of residuals per year. Bottom: weighted average.

Model Causal Non-Causal ARX

Target # False pos. # OOR # False pos. # OOR # False pos. # OOR

P1DR1 179 53 91 40 82 35

P1DR4 178 54 89 42 75 38

P2IR1 184 54 89 41 85 35

P2IR4 198 54 95 50 75 38

P5DR1 125 31 50 21 51 21

P5DR3 164 49 72 31 68 30

P6IR1 129 31 51 21 50 21

P6IR3 171 42 63 27 65 28

Mean 166 46 75 34 69 31

Table 5.4: Amount of false positives
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5.3.3 Anomaly detection

Figure 5.9 (a) shows the F2 results as a function of the model and the anomaly magnitude

a for scenarios 1 and 2. As expected, the larger anomalies were more easily detected in all

cases. As for the input variables, Non-Causal model performed better on average, especially

for small anomalies and as compared to the causal model. Again, the inclusion of lagged

variables generated a minor effect, in this case towards slightly poorer performance.
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Figure 5.9: F2 index for scenarios 1 and 2.

The results for Scenario 3 are more interesting to analyse, since they correspond to a

realistic anomaly affecting the overall dam behaviour. Since the effect of this anomaly is

different on each output, the results are presented in terms of the true detection time td

per device, i. e., the elapsed time until the first record identified as a deviation towards

downstream. Figure 5.10 shows the results.

A perfect model would feature null detection time for the affected devices (P1DR1,

P1DR4, P5DR1 and P5DR3), and 365 days for the remaining (P2IR1, P2IR4, P6IR1 and

P6IR3). Both the Non-Causal and the ARX models showed almost perfect performance. As

regards the causal model, the anomaly in the most affected devices (P5DR1 and P5DR3) is
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Figure 5.10: Detection time (days) per target and model for scenario 3.
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detected almost instantly, but is less effective for P1DR1 and P1DR4, whose deviation from

the reference behaviour is low (see Table 5.3.1). The detection time for P1DR1 and P1DR4

is around two months, with high variation up to 300 days.

A complete assessment of the model performance requires analysing the amount of false

positives. They correspond to any value outside the prediction interval for the targets in the

right half of the dam body, and to anomalies correspondent to deviations towards upstream

for those in the left region. Figure 5.11 shows these results.
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Figure 5.11: False positives per target and model for scenario 3.

It can be observed that the causal model is clearly more effective in this regard: both the

Non-Causal and the ARX models classify around half of the observations for the unaffected

devices as abnormal (there are 52 observations in the period of analysis). This result is due

to the nature of the inputs for each model. For example, the Non-Causal model generates a

prediction for P6IR1 based on the value of P5DR1 (among other inputs, but this is particu-

larly important for being symmetrical within the dam body). In scenario 3, P5DR1 deviates

towards downstream with respect to the reference (training) period. Since that input is

anomalous, the resulting prediction is also wrong. In this case, the model interprets that the

value of P6IR1 falls in the upstream side of the prediction interval.

This issue is highly relevant, since the final aim of the system is not only to detect a
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Figure 5.12: Detection time and false positives per target for scenario 3 and the Non-Causal

model, once the anomalous variables are removed from the input set.

potentially anomalous behaviour, but also to support the correct identification of the cause,

and then the decision making. In fact, similar results would have been obtained had the

devices been analysed jointly in scenarios 1 and 2: a real deviation towards downstream in

some device is (in general) correctly identified by the non-causal models, but that same value

would generate an incorrect prediction for other devices, of opposite sign.

Causal models do not give these spurious results, since they predict the dam response

only based on the external variables, at the cost of a generally higher detection time.

A straightforward option to avoid this behaviour is to discard non-causal models. How-

ever, their good performance for detecting true anomalies suggests that they can be useful

overall.

As an alternative, the outputs whose value is identified as anomalous by the Non-Causal

model can be removed from the input set. This requires re-training, but it can still offer

accurate results, thanks to the flexibility of BRTs.

A new set of 240 cases was run for scenario 3 and the Non-Causal model. The results

shown in Figure 5.12 confirm that the removal of abnormal variables is effective against false

positives, while maintaining the ability for anomaly detection. The model performance is

only poorer for P2IR1 (unaffected by the anomaly in scenario 3): the detection time is lower

than 365 days, which indicates the existence of false positives. Nonetheless, the average

detection time is still 270 days, and the total amount of false positives is lower than 10 %.

This approach was implemented in a new interactive tool, which was developed to present

the results for all devices involved. It is based on the shiny library [11], and includes two

plots for each model (Figure 5.13).

First, each device is plotted on its actual location within the dam body, with a symbol

that is a function of the deviation between prediction and observation for the date under
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Figure 5.13: Interface of the dam monitoring data analysis tool for a case from scenario 3.

The imposed displacement in the left abutment is correctly identified

consideration. Then, the evolution of observations and predictions for the most recent period

is plotted for two devices selected by the user. Figure 5.13 shows the application interface

for one of the anomalies from scenario 3. It can be observed that the anomaly is correctly

localised.

With this tool, the user jointly receives the overall information on all devices under con-

sideration, and a more detailed plot of the selected output, where the value of the deviation,

as well as the trend, can be observed. In this version, devices whose residuals are lower than

two times the standard deviation are plotted in green; those between two and three times

are depicted in yellow, and those above three times are shown in red. The shapes correspond

to the direction of the deviation (upstream or downstream), as interpreted by each model.

This criterion can be tailored to the user preferences.

5.4 Summary and conclusions

A methodology for early detection of anomalies in dam behaviour was presented, which in-

cludes a prediction model based on BRT, a criterion for detecting anomalies based on the

residual density function, and a procedure for realistic estimation of the prediction inter-

val. Also, extraordinary loads are identified by jointly considering the two most important

external loads (hydrostatic load and temperature).

Causal models (which only consider external variables) and non-causal (including both
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internal and lagged variables as predictors) were compared in terms of detection time for

three different anomaly scenarios. The results showed that non-causal models are more

effective for the detection of anomalies, both affecting to isolated devices (Scenarios 1 and

2), and those resulting from an overall malfunction of the dam (Scenario 3).

In the case study considered, the inclusion of lagged variables had minor effect both in the

model accuracy and the detection time. This suggests that the Non-Causal model (without

lagged variables) might be a better choice due to its higher simplicity.

Causal models were more robust as regards the precision (when accounting for false

positives). In abnormal periods, the prediction of non-causal models for unaffected devices

is often wrong because it is partially based on anomalous data (that from the devices actually

affected by the anomaly). This type of behaviour is a consequence of the nature of the model

itself, and is the price to pay in exchange for a greater ability for early detection of anomalies.

However, an updated version of the Non-Causal model, where the anomalous variables

are removed from the input set, avoided the above-mentioned issue, and showed to be as

effective for anomaly detection as the original Non-Causal, and even more robust against

false positives than the causal model. Hence, this approach is the best option to provide

useful information to the dam safety managers. To that end, it was implemented in an

interactive on-line tool, which shows the devices whose behaviour is interpreted as potentially

abnormal by the predictive model, together with the plot of the evolution of predictions and

observations for all relevant outputs.

This tool can be used as a support for decision making, since it facilitates the identification

of a potential deviation from normal behaviour. Thus, it can be used as an indicator to

generate a warning which might lead to intensify the dam safety monitoring activity.

59





6
Achievements, Conclusions and Future

Research Lines

6.1 Achievements

A comprehensive literature review on data-based models for dam behaviour estimation was

performed. A selection of articles was analysed, paying attention to the essential aspects of

model building and assessment. The weaknesses of the published works were highlighted,

and conclusions were drawn on criteria for building data-based dam behaviour models.

The possibilities of 5 state-of-the-art machine learning algorithms for dam behaviour

modelling were analysed. Two of them had seldom been applied in this field before (neural

networks and support vector machines), while the rest (random forests, boosted regression

trees and multi-adaptive regression splines) had, to the best of my knowledge, never been

used in dam safety to date. Their prediction accuracy was computed for 14 output variables

of three different types (radial and tangential displacements, and leakage), correspondent

to a real 100-m high arch dam. Issues related to the training algorithms and criteria to

determine the value of the meta-parameters were addressed.

As a result of the previous analysis, BRT models were selected for further assessment.

Based on the same case study, the effectiveness of the available tools (partial dependence plots

and variable importance measure) for BRT model interpretation was verified. The results of

the variable importance measure were presented in an innovative way: as wordclouds. This
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kind of plots are well known and often employed in other fields, and showed to be useful for

agile interpretation of the results.

The effect of the inclusion of non-causal inputs was assessed, leading to the non-causal

models. They showed to be even more accurate, though new issues arose regarding their

implementation in dam safety assessment. Criteria for overcoming them were proposed,

as well as for the practical implementation of data-based predictive models for the early

detection of anomalies:

• A methodology to neglect false anomalies due to the occurrence of extraordinary loads.

• An innovative approach to obtain a realistic estimate of the model accuracy.

• A residual-based criterion to determine the prediction interval (range of safe operation).

These criteria were applied to develop an interactive tool for dam monitoring data analysis

and anomaly detection that allows on-line control of dam performance at a glance. Both the

code of the application and images of the user interface are included in Section C.3.

A second interactive tool was also developed, which makes use of the “shiny” [11] and

“ggplot2” [80] libraries within RStudio [59]. It has the following functionalities:

1. Data Import is designed to load time series data to be analysed and used to build

predictive models. Alternatively, a previously fitted model can be loaded for its anal-

ysis.

2. Data Exploration allows pseudo-4D representation of dam monitoring data. Time

series for all installed devices (both external and response variables) can be plotted.

The user can select which variable to plot in the horizontal and vertical axes. The values

are depicted with shape and colour dependent on two extra variables, also selected by

the user. In this same section, time series of several outputs can be jointly plotted,

together with some external variable in a secondary y-axis. This plot is based on the

library “dygraphs” [77], which is highly interactive.

3. Model Fitting is designed to build BRT models to estimate different output variables

for users unfamiliar with RStudio. The following parameters can be tuned:

• Output variable to predict

• Inputs to consider (the resulting model can thus be causal or non-causal)

• Training parameters (number of trees, shrinkage, interaction depth and bag frac-

tion)

• Training and validation periods
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The output of the application is a plot with predictions and observations, together

with the residuals and the MAE for the training and prediction sets.

4. Interpretation includes plots showing the input variable importance: a bar chart

with the 5 most important variables and a wordcloud with all inputs. Also, partial

dependence plots for three predictors selected by the user.

6.2 Conclusions

The main conclusions of the research can be summarised as follows:

• Machine-learning and other advanced data-based tools are becoming familiar in the

field of dam safety. The amount of published papers on the field increased in the recent

years, most of which showed that the accuracy of deterministic or statistical models

can be increased. However, most of them referred to specific case studies, certain dam

typologies or determined outputs, and did not deal with model interpretation. As a

result, these tools are far from being fully implemented in day-to-day practice.

• ML models typically feature a relatively high amount of parameters. This makes them

flexible, but also susceptible to over-fit the training data. Hence, it is essential to check

their generalisation capability on an adequate validation data set, not used for fitting

the model parameters.

• Among the ML tools analysed, Boosted Regression Trees resulted to be advantageous

from an overall viewpoint, since they showed to be more accurate on average for dif-

ferent type of output variables, easy to implement, robust with respect to the training

set size, able to consider any kind of input (numeric, categorical or discrete), and low

sensitive to noisy and low relevant predictors.

• Nonetheless, other ML algorithms such as Neural Networks, Support Vector Machines

or Multi-Adaptive Regression Splines, produced more accurate predictions for some

response variables. Moreover, some of them allow further tuning (e.g. variable selec-

tion). Therefore, if the main objective is to achieve the best possible fit, the analysis

should not be limited to a single technique.

• The accuracy of data-based models as BRTs may decrease dramatically when extrapo-

lating, so the conclusions drawn from their interpretation should be analysed carefully

when those situations arise. In this sense, a load combination that presents for first

time in dam history is an extraordinary situation, even though the values of the loads

are within the historical range, when considered separately. As an example, it was

found that the model predictions were unreliable in situations with a combination of
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low hydrostatic load and air temperature, although both were higher than the respec-

tive historical minimum.

• The application of BRT models to make predictions for a more recent period than that

used for training, involves extrapolation over time (provided that some time dependent

predictor is considered). Hence, results should be analysed carefully, in particular if

the time effect seems relevant. This applies to any data-based model considering time

as input, including HST.

• The removal of the early years of dam life cycle from the training set can be beneficial,

though results suggest that its influence depends on the algorithm. While it resulted

in a decrease in MAE above 10 % for some response variables, BRT accuracy showed

lower dependency. Nonetheless, the size of the training set should be considered as an

extra parameter to be optimised during training.

• The minimum required training period to obtain a model with reasonable accuracy

can be estimated in 5 years, although this value is highly case-dependent. The aspects

that influence this minimum are:

– The load combinations acting during the first years of operation: for example,

if the reservoir level remains low, a data-based model will be highly inaccurate

when estimating dam response in front of the design flood.

– The behaviour of dam and foundation during the first filling and the subsequent

months. Although transient phenomena are frequent, their magnitude can differ

greatly from case to case.

– The algorithm used to generate the model, and the input variables considered.

In particular, non-causal models can be highly accurate with a shorter training

period.

• Non-causal models (which include both external and response variables as inputs)

are more accurate than causal ones for dam behaviour modelling, and more effective

for early detection of anomalies. The reason is that the response variables implicitly

provide information that is not included in the causal variables. However, it should

be noted that if an anomaly affects several response variables, models that include

them as inputs will probably give spurious results. This effect was actually observed

in the case study, although they were still advantageous after removing the anomalous

variables from the input set.

• BRT models can be efficiently interpreted as regards the relevant questions to be

solved in dam safety assessment. Partial dependence plots show the contribution of

each input to the output under consideration, as well as the performance evolution over
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time. Variable importance measures allow identifying the thermal inertia, as well as

the relative influence of each acting load. The results are objective and reliable, since

no a priori assumptions need to be made on the shape and intensity of the association

between each input and the dam response.

• In spite of the observed advantages of ML algorithms, their results should be checked,

when possible, against those provided by other means, such as deterministic models.

Also, all available information about the dam behaviour should be taken into account,

especially that obtained by visual inspection. Ultimately, engineering judgement based

on experience is critical for building the model, interpreting the results, and making

decisions with regard to dam safety.

6.3 Future research lines

Future research lines can be drawn from the results of the work, as well as from identified

open issues:

• The work focused on BRTs because a robust and highly adaptive algorithm was looked

for. However, other tools may be equally or more convenient in certain cases, depending

on the variable to predict, the available information, and the characteristics of the dam.

As an example, MARS provided greater accuracy in 3 of the 14 variables analysed in

the comparative study, and always with a shorter training period. More sophisticated

approaches such as the committees of experts (which can be of different nature) could

also throw more accurate predictions. A more detailed discussion of this and similar

algorithms might determine in which conditions they can be more effective.

• Data-based models obviously require a minimum amount of data to be generated. This

means that they cannot be employed during the initial stage of dam life cycle, and in

particular during the first filling. In this period, only numerical models are available,

thought they also require real data for calibration. Interesting information might be

obtained from the application of data-based models on numerically generated data, to

narrow prediction intervals in the initial years of dam operation.

• The joint application and analysis of numerical and data-based models can also be

advantageous in subsequent stages of dam life cycle, when enough monitoring data is

available to build predictive models. Numerical models can be employed to estimate

dam response in front of extraordinary loads, to enlarge and enrich the training data.

Also, they can be modified to simulate potential anomalies or modes of failure, to

generate response data to feed the data-based model. Research on this topic might

reveal further possibilities.
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• This research was based on the assumption that the time series data available were

accurate and complete. Actually, data for the case study presented a low amount

of missing values, which were simply interpolated. In the general case, it is highly

frequent that long periods of data for determined sensors are missing. This prevents

the inclusion of such variables among the inputs or output set, unless the missing values

are imputed. Research is necessary to formulate criteria for missing value imputation.

They should be dependent, at least, on the type of variable and the length of the

missing period. Linear interpolation is appropriate for some variables (e.g. weekly

mean temperature) if the missing period is short, but that is not the case in general.

• Many of the dams in operation were built decades ago, and their monitoring data

is heterogeneous, incomplete or hand-written. In some cases, the lack of information

might make impossible to apply any data-based model. A general picture of the quality

of monitoring data would allow to develop tools and criteria to import data into an

appropriate format and take full advantage of the available information.

• Flexibility was one of the premises throughout the research. BRTs were chosen because

of their accuracy, but also because they automatically adapt to a variety of situations in

terms of input variables availability and strength and shape of input-output association.

Nonetheless, application of the tool and methodology to a set or real dams of different

typologies would reveal specific issues to be solved.

• When an anomaly that affects several response variables occur, the non-causal models

that rely on such variables as inputs give false positives on the unaffected devices.

In the implementation developed, this problem is avoided by simply eliminating all

variables considered anomalous in a first iteration. A more detailed study of this issue

could allow developing a general criterion for identifying variables that are in fact

abnormal, taking full advantage of all available information.

• The application developed displays the observations of the selected devices with differ-

ent colour, depending on whether the system considered them as normal or abnormal.

These colours are drawn over a front view of the dam, with each device in its actual

location. In case of incipient failure, it could be useful to identify the potential causes,

taking into account the dam typology, and the number and location of devices whose

measure is identified as anomalous. A more detailed study, would allow defining colour

patterns associated to potential failure modes.
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tion of dam behaviour: A review and some methodological considerations. Archives of

Computational Methods in Engineering, pages 1–21, 2015.
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nouvelles. In 9th ICOLD Congres, pages 529–550, 1967. Q34-R30. [in French].

[82] H. Xu and X. Li. Inferring rules for adverse load combinations to crack in concrete

dam from monitoring data using adaptive neuro-fuzzy inference system. Science China

Technological Sciences, 55(1):136141, 2012.

[83] H. Yu, Z. Wu, T. Bao, and L. Zhang. Multivariate analysis in dam monitoring data

with PCA. Science China Technological Sciences, 53(4):1088–1097, 2010.

73





Appendices

75





A
Articles in the compilation

77





A.1 Data-based models for the prediction of dam be-

haviour. A review and some methodological con-

siderations

Title: Data-based models for the prediction of dam behaviour. A review and some method-

ological considerations
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Abstract Predictive models are an important ele-
ment in dam safety analysis. They provide an esti-

mate of the dam response faced with a given load
combination, which can be compared with the ac-
tual measurements to draw conclusions about dam

safety. In addition to numerical finite element mod-
els, statistical models based on monitoring data have
been used for decades for this purpose. In particu-
lar, the hydrostatic-season-time method is fully im-

plemented in engineering practice, although some
limitations have been pointed out. In other fields
of science, powerful tools such as neural networks

and support vector machines have been developed,
which make use of observed data for interpreting
complex systems. This paper contains a review of
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Universitat Politècnica de Catalunya (UPC). Barcelona,
Spain
Tel.: +34-93-401-74-95
E-mail: onate@cimne.upc.edu

statistical and machine-learning data-based predic-
tive models, which have been applied to dam safety

analysis. Some aspects to take into account when
developing analyses of this kind, such as the selec-
tion of the input variables, its division into training

and validation sets, and the error analysis, are dis-
cussed. Most of the papers reviewed deal with one
specific output variable of a given dam typology and
the majority also lack enough validation data. As a

consequence, although results are promising, there
is a need for further validation and assessment of
generalisation capability. Future research should also

focus on the development of criteria for data pre-
processing and model application.

Keywords Dam monitoring · Dam safety · Data

analysis · Machine learning · Statistical models ·
Behaviour models

1 Introduction

Behaviour models are a fundamental component of
dam safety systems, both for the daily operation and
for long-term behaviour evaluation. They are built

to calculate the dam response under safe conditions
for a given load combination, which is compared to
actual measurements of dam performance [71]. The

result is an essential ingredient for dam safety as-
sessment, together with visual inspection and engi-
neering judgement [27].

Numerical models based on the finite element

method (FEM) are widely used to predict dam re-
sponse, in terms of displacements, strains and stresses.
They are based on the physical laws governing the
involved phenomena, which gives them some inter-

esting features: a) they are useful for the design and,
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more importantly, for dam safety assessment during

the first filling, and b) they can be conveniently in-
terpreted, provided that their parameters have phys-
ical meaning.

On the contrary, some relevant indicators of dam
safety, such as uplift pressure and leakage flow in
concrete dams, cannot be predicted accurately enough

with numerical models [38], [39]. In addition, the
knowledge of the stress-strain properties of the dam
and foundation materials is always limited [75], and
so is the prediction accuracy of FEM models [27].

These limitations, together with the availability
of monitoring data, have fostered the application
of statistical models to predict dam response. They

have been used in dam safety analyses for decades
as a complement to visual inspection and numerical
models, to support decision making.

In recent years, there is a tendency towards au-
tomatising dam monitoring devices [27], which al-
lows for increasing the reading frequency and results
in a greater amount of data available. Although it en-

courages extraction of as much information as possi-
ble in relation with dam safety conditions [57], it has
revealed certain limitations of traditional statistical

tools to manage dam monitoring data [58].

On another note, advanced tools have been de-
veloped in the machine learning (ML) community to

build data-based predictive models. They have been
applied in various fields of science and engineering,
where similar problems have emerged more dramat-
ically, provided that the amount of data is much

larger or the underlying phenomena is much less un-
derstood. This is the case, for example, of medicine,
e-commerce, smartphone applications, econometrics

or business intelligence, among others. Most of these
tools exclusively rely on data to build predictive mod-
els, i.e. no prior assumptions on the physics of the

phenomenon have to be made beforehand [25].

The limitations of traditional statistical tools and
the availability of these advanced learning algorithms
have motivated dam engineers to search the possibil-

ities of the latter for building dam behaviour models,
as well as for analysing dam behaviour.

This paper reports a review on dam behaviour

models based on monitoring data. The work focuses
on prediction accuracy, although it also refers to
model suitability for interpreting dam performance.

The most popular techniques are dealt with in sec-
tion 2, whereas some common issues in building data-
based models and evaluating their results are anal-
ysed in section 3. The analysis is performed on the

basis of the review of 40 papers on the field.

2 Statistical and machine learning

techniques used in dam monitoring analysis

The aim of these models is to predict the value of
a given variable Y ∈ R (e.g. displacement, leakage
flow, crack opening, etc.), in terms of a set of inputs1

X ∈ Rd:

Y = Ŷ + ε = F (X) + ε (1)

ε is an error term, which encompasses the measure-
ment error, the model error, and the deviation of the
dam response from the expected behaviour [71]. This
term is important, given that it is frequently used to

define safety margins and warning thresholds [27].

The models are fitted on the basis of a set of
observed input data xi, and the correspondent reg-
istered outputs yi, where i = 1, ..., N and N is the

number of observations. Note that each xi is a vector
of d components, being d the number of inputs.

The inputs may be of different nature, depending
on the method:

– Raw data recorded by the monitoring system,
which in turn can be:

– External variables: reservoir level (h), air tem-
perature (T ), etc.

– Internal variables: temperature in the dam
body, stresses, displacements, etc.

– Variables derived from observed data. For exam-
ple:
– Polynomials

– Moving averages
– Derivatives

2.1 Hydrostatic-seasonal-time (HST) model

The most popular data-based approach for dam mon-
itoring analysis is the hydrostatic-seasonal-time (HST)

model. It was first proposed by Willm and Beau-
joint in 1967 [76] to predict displacements in con-
crete dams, and has been widely applied ever since.

It is based on the assumption that the dam response
is a linear combination of three effects:

Ŷ = F1 (h) + F2 (s) + F3 (t) (2)

1 Traditionally, the statistical models applied in dam
monitoring analysis were based on causal variables, e.g.,
hydrostatic load and temperature, which are often termed
“independent variables”. On the contrary, other algo-
rithms make use of transformed variables (such as gra-
dients or moving averages), and non-causal observations
(e.g. the previous value of the output). This has led to the
use of various terms to refer to the model inputs, such as
“predictors”, “covariates”, and “features”. In this paper
they are used indistinctly.



Data-based models for the prediction of dam behaviour 3

– A reversible effect of the hydrostatic load which

is commonly considered in the form of a fourth-
order polynomial of the reservoir level (h) [71],
[4], [67]:

F1 (h) = a0 + a1h+ a2h
2 + a3h

3 + a4h
4 (3)

– A reversible influence of the air temperature, which
is assumed to follow an annual cycle. Its effect is

approximated by the first terms of the Fourier
transform:

F2 (s) = a5cos(s) + a6sen(s) + a7sen
2(s)+

a8sen(s)cos(s)
(4)

where s = 2πd/365.25 and d is the number of
days since 1 January.

– An irreversible term due to the evolution of the

dam response over time. A combination of mono-
tonic time-dependant functions is frequently con-
sidered. The original form is [76]:

F3 (t) = a9log(t) + a10e
t (5)

The model parameters a1...a10 are adjusted by
the least squares method: the final model is based

on the values which minimise the sum of the squared
deviations between the model predictions and the
observations.

Some authors used variations of the original HST
model, by using some heuristics or after a trial-and-
error process. Mata [40] considered the irreversible
effect by means of F3 (t) = a9t+ a10e

−t. Chouinard

and Roy [12] used a linear term in t and a third-order
polynomial of h. Simon et al. [67] chose F3 (t) =
a9e
−t + a10t + a11t

2 + a12t
3 + a13t

4, whereas Yu et

al. [80] used F3 (t) = a9t + a10t
2 + a11t

3. Carrère
applied a variation of HST in which the possibility
of a sudden change in the dam response at a certain

time is considered by adding a step function to the
irreversible term [9].

The method makes use of strong assumptions on
the response of the dam, which might not be fulfilled

in general. In particular, the three effects are consid-
ered as independent, although it is well known that
certain collinearity exists. The reservoir level affects

the thermal response of the dam, provided that the
air and water temperatures differ [73]. In some cases,
the reservoir operation follows an annual cycle due
to the evolution of the water demand, so there is

a strong correlation between h and the air temper-
ature [38], [66], [33], [13]. Collinearity may lead to
poor prediction accuracy and, more importantly, to

misinterpretation of the results [1].
Another limitation of the original form of HST

model is that the actual air temperature is not con-

sidered. On one hand, this makes it more flexible,

because it can be applied in dams where air temper-
ature measurements are not available. On the other

hand, it reduces its prediction accuracy for particu-
larly warm or cold years [73], [66].

Several alternatives have been proposed to over-
come this shortcoming. Penot et al. [50] introduced

the HSTT method, in which the thermal periodic
effect is corrected according to the actual air tem-
perature. This procedure has been applied at Elec-

tricité de France (EDF) [73], [20] with higher accu-
racy than HST, especially during the 2003 European
heat wave. Although the proposal of this method

has been frequently attributed to Penot et al., Bre-
itenstein et al. [8] applied a similar scheme 20 years
earlier.

Tatin et al [73], [74] proposed further corrections

of HSTT. The HST-Grad model takes into account
both the mean and the gradient of the temperature
in the dam body, considered as a one-dimensional

domain. They are estimated from the air tempera-
ture in the downstream face, and from a weighted
average of the air and water temperatures in the up-
stream one. A similar and more detailed approach

was applied by the same authors, called the SLICE
model [73]. It considers different thermal conditions
for the portion of the dam body located below the

pool level to that situated above, which is not af-
fected by the water temperature.

Other common choice is to replace the periodic
function of the thermal component by the actual

temperature in the dam body, resulting in the hydrostatic-
thermal-time (HTT) method. One difficulty of this
approach is how to select the appropriate thermome-

ters among those available. In arch dams, some au-
thors only consider the thermometers in the central
cantilever, assuming that it represents the thermal
equilibrium between cantilevers in the right and left

margins [66]. Mata et al. [42] solved this issue by ap-
plying principal component analysis (PCA), while
other authors [33] considered all the available in-

struments. Li et al. [34] proposed an error correction
model (ECM), featuring a term which depends on
the error in the estimation of previous output val-
ues.

Although HST was originally devised for the pre-
diction of displacements in concrete dams, it has
also been applied to predict other variables. Simon

et al. [67] estimated uplifts and leakage with HST,
although they obtained more accurate results with
neural networks (NN). Guedes and Coelho [24] built
a model for the prediction of leakage in Itaipú Dam

with the form a1h
2
6,11 + a2t + a3t

2 + a4log (1 + t),
where h6,11 is the average reservoir level between 6
and 11 days before the measurement. Breitenstein et
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al. [8] also studied leakage, although they discarded

both the seasonal and the temporal terms. Yu et al.
[80] combined HST with PCA to predict the opening
of a longitudinal crack in Chencun Dam.

A common feature to HST and its variations is
that the output is computed as a linear combination
of the inputs. Hence, they are all multi-lineal regres-

sion models (MLR), so their coefficients can be fitted
by least squares. Other approaches based on MLR
have been applied in dam safety, considering a larger
set of inputs (e.g. [69], [19]).

2.2 Models to account for delayed effects

It is well known that dams respond to certain loads

with some delay [39]. The most typical examples are:

– The change in pore pressure in an earth-fill dam

due to reservoir level variation [6].
– The influence of the air temperature in the ther-

mal field in a concrete dam body [67].

Other phenomena have been identified which are
governed by similar processes. For example, Lom-

bardi [38] noticed that the structural response of an
arch dam to hydrostatic load comprised both elastic
and viscous components. Hence, the displacements

not only depended on the instantaneous reservoir
level, but also on the past values. Simon et al. [67] re-
ported that leakage flow at Bissorte Dam responded

to rainfall and snow melt with certain delay.
Several approaches have been proposed to ac-

count for these effects. The most popular consists
of including moving averages or gradients of some

explanatory variables in the set of predictors. In the
above mentioned study, Guedes and Coelho [24] pre-
dicted the leakage flow on the basis of the mean

reservoir level over the course of a five-days period.
Sánchez Caro [62] included the 30 and 60 days mov-
ing average of the reservoir level in the conventional
HST formulation to predict the radial displacements

of El Atazar Dam. Popovici et al. [53] used moving
averages of 3, 10 and 30 days of the air tempera-
ture, together with the pool level in the previous

3 days to the measurement in order to predict dis-
placements in a buttress dam with neural networks
(NN). Crépon and Lino [15] reported significant im-

provement in the prediction of piezometric levels and
leakage flows by considering the accumulated rainfall
and the derivative of the hydrostatic load as predic-
tors.

This approach requires a criterion to determine
which moving averages and gradients should be con-
sidered for each particular case. Demirkaya and Bal-

cilar [19] performed a sensitivity analysis to select

the number of past values to include both in an MLR

and in a NN model. They used the same period for
the external and internal temperatures, as well as for
the reservoir level, and found that the most accurate
results were obtained with an MLR model consid-

ering data from 30 previous days. Although their
results compared well to those proposed by the par-
ticipants in the 6th ICOLD Benchmark Workshop2

[81], they lacked physical meaning: they would im-
ply that the dam responded with the same delay to
the water level, the air temperature, and the internal
temperature field.

Santillán et al. [64] proposed a methodology to
select the optimal set of predictors among various
gradients of air temperature and reservoir level. They

used the gradients instead of the moving averages
to ensure independence among predictors (moving
averages are correlated with the original correspon-

dent variables). They combined it with NN to pre-
dict leakage flow in an arch dam.

A more formal alternative to conventional HST
to account for delayed effects was proposed by Bonelli

and Royet [7]. It is based on the hypothesis that the
delayed effect depends on the convolution integral of
the impulse response function (IRF) and the load-

ings:

Ŷ = α
1

t0

∫ t

0

e
−
(
t·t′
t0

)
h (t′) ∂t′ (6)

where α is a damping coefficient, t0 is the char-
acteristic time, which depends on the phenomenon,

and h (t′) is the reservoir level at time t′. Although
the analytical integration of this function is cumber-
some, it can be solved by means of numerical ap-
proximation. The advantage of this approach is that

the coefficients have physical meaning: the charac-
teristic time provides insight into the lag with which
the dam reacts to a variation in the input variable,

whereas the damping reflects the relation between
the amplitude of the reservoir level variation and
that of the pore pressure in the location considered

within the dam body.
A similar approach was followed by the same au-

thor in the frame of the above mentioned 6th ICOLD
Benchmark Workshop [4]. In this case, it was in-

tended to account for the delayed response of the

2 In the 6th ICOLD Benchmark Workshop, the partic-
ipants were asked to provide a data-based model for pre-
dicting the radial displacement of Schlegeiss arch dam for
the period 1999-2000. Time histories of water level, air
temperature and concrete temperatures at various loca-
tions were provided for the period 1992-2000, as well as
the observed values of the target variable for the period
1992-1998.
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dam in terms of the temperature field, with the final

aim of predicting radial displacements.
Lombardi et al. [38] suggested an equivalent for-

mulation, also to compute the thermal response of

the dam to changes in air temperature. Although the
development was slightly different, the numerical ap-
proximation to the integral is equivalent. Lombardi

arrived at the following expression [39]:

Ŷ (t) = α · Y (t−∆t) +

(
1 +

α

β
− 1

β

)
X (t) +

(
1

β
− α

β
− α

)
X (t−∆t)

(7)

where α = e
−∆t
t0 , β = ∆t

t0
, and ∆t is the measure-

ment interval. It should be noted that the numerical

integration of (6) by means of (7) leads to a predic-
tive model which is a linear combination of:

– the value of the predictors at t and t−∆t
– the value of the output variable at t−∆t

This is the conventional form of a first order auto-
regressive exogenous (ARX) model. In general, these
models require specific algorithms to determine the

appropriate order of the model for a given case, i.e.,
the amount of past values to consider for the output
and each of the input variables. The next section is
devoted to this aspect and to auto-regressive models.

In practice, an input transformed by equation (6)
is similar to a weighted moving average (WMA) [39].
Figure 1 shows the comparison between both trans-

formations of 4 inputs: a) a sinusoidal, b) a random
variable, c) a cyclic variable with random noise and
d) an isolated pulse. It can be seen that the trans-

formed sinusoidal can be accurately modelled with
an appropriate moving average. The difference be-
tween IRF and WMA is greater for random inputs,
and the discrepancy increases as the signal-to-noise

ratio decreases.
IRF has the advantage of its physical meaning,

and has offered accurate results for determined out-

puts. Nonetheless, given that it makes a strong as-
sumption on the characteristics of the phenomenon,
it is restricted to specific processes. Even when ap-
plied to a similar phenomenon, such as the effect of

precipitation on the pore pressure on an earth-fill
dam, the accuracy decreases [7]. Moreover, the coef-
ficients lose their physical meaning in this case.

2.3 Auto-regressive (AR) models

The use of the previous (lagged) value of the output
to calculate a prediction for current record may in-

duce to question a) whether the observed previous

value or the precedent prediction should be used, and

b) whether the model parameters should be read-
justed at every time step.

In general, using the actual previous value and

refitting the model should provide better prediction
accuracy, but such a model would not be able to
detect gradual anomalies [79]: it would learn the
abnormal behaviour and treat it as ordinary [38].

Riquelme et al. [59] improved the accuracy of a NN
model by several orders of magnitude by applying
this approach.

The opposite alternative is to fit the model to
data gathered for a given time period, and make
long-term predictions on a step-by-step basis [48],

i.e., predict the output at t+ 1, and use it (the pre-
diction; not the observation) to estimate the value at
t + 2. This procedure may fail in error propagation
[10], but in principle should be appropriate to unveil

gradual anomalies.

An intermediate choice is to use the actual mea-
surement of the output variable, without readjusting

the model parameters. In this case, the coefficients
obtained on the basis of a period of normal behaviour
are applied to future observations, hence the model

could detect changes in the relation between current
and next values of the output.

Although several authors built predictive models
based on lagged output values, most of them did not

mention which of the described approaches applied.
Palumbo et al. [48], should have used the previous
prediction, given that they presented a solution to

the 6th ICOLD Benchmark Workshop, and the ob-
served values of the output were not provided to the
participants beforehand.

If the possibility of including past values of the
variables is considered, a criterion to select some of
the available shall be defined. Otherwise, the amount
of predictors is quite high. For example, Piroddi and

Spinelli [52] considered the most general form of a
non-linear autoregressive exogenous model (NARX),
which depended on current and previous values of

the input variables, on precedent values of the out-
put, as well as on linear and non-linear combinations
of them. They applied a specific algorithm for select-
ing 11 predictors in the final model.

In general, these models prioritise prediction ac-
curacy over explanatory capability. The greater the
number of variables in the model, the harder it is

to interpret and to isolate the effect of each compo-
nent. Nonetheless, some procedures have been pro-
posed to interpret models whose parameters do not

have physical meaning, as described in section 3.2.
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Fig. 1 Comparison between impulse response function (IRF) and weighted moving average (WMA) for various inputs:
a) sinusoidal, b) random, c) sinusoidal with random noise and d) impulse.

2.4 Neural networks (NN)

Linear models are not well suited to reproduce non-
linear behaviour, even though some actions are con-
sidered in the form of high order polynomials [12].

On the contrary, NN models are flexible, and allow
modelling complex and highly non-linear phenom-
ena. Although there are various types of NN mod-

els [3], the vast majority of applications for dam
monitoring data analysis are based on the multi-
layer perceptron (MLP). Such models, as their name
suggests, are comprised by a number of perceptrons

(also called “units”, or “neurons”) organised in dif-
ferent layers: input, hidden, and output (Figure 2).
In principle, several hidden layers can be used (see

section 2.6), but one is mostly adopted in practice
[3].

The input of each unit Ul is a linear combination
of the predictors Xj :

cl =
d∑

j=1

Xj · wjl + bl (8)

which is later transformed by an activation func-
tion g to compute the neuron’s output:

zl = g(cl) (9)

Several forms of g can be chosen (non-linear in

general), although sigmoid functions are often em-

ployed, such as the logistic (10) and the hyperbolic

tangent (11) (Figure 3). As an exception, Su and Wu
[70] selected Mexico-hat wavelet functions (12) to
obtain a wavelet neural network (WNN) model, oth-
erwise similar to conventional NN models described

in this section.

g(cl) =
1

1 + e−cl
(10)

g(cl) =
ecl − e−cl
ecl + e−cl

(11)

g (cl) =
(
1− cl2

)
· e
(
1− cl

2

2

)

(12)

The output layer may be composed of one of the
described neurons, although a linear transform is fre-
quently chosen, so that the overall model output is

computed as:

Ŷ =

L∑

l=1

wlout · g




d∑

j=1

Xjwjl + bl


+ bout (13)

NN models can be thought of as an extension of
MLR, which output cl is expanded by the perceptron

through a non-linear transformation g [25]. It should
be noted (Figure 3) that the sigmoid functions have
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a linear interval, thus an unit with small weights

performs a linear transformation. On the contrary,
they have horizontal asymptotes, which may cause
numerical problems. While it is widely acknowledged
that the variables shall be normalised before fitting

an NN model, some authors restrict them to the
range [0.1, 0.9] to avoid the above mentioned prob-
lems [75], [23], [56].

The most common learning algorithm is called
back-propagation: NN model parameters {wjl , bl, wlout, bout}
are randomly initialised, and iteratively updated to

minimise a cost function (typically the sum of the
squared errors), by means of the gradient descent
method [25].

The issues to be considered for building an NN

model are the following:

1. The best network architecture, i.e., number of
layers and perceptrons in each layer, is not known
beforehand. Some authors focus on the defini-

tion of an efficient algorithm for determining an
appropriate network architecture [64], whereas
others use conventional cross-validation [40] or

a simple trial and error procedure [75].
2. The training process may reach a local minimum

of the error function. The probability of occur-
rence of this event can be reduced by introducing

a learning rate parameter [75].

3. The NN models are prone to over-fitting. Vari-
ous alternatives are suitable for solving this issue,

such as early stopping and regularisation [25].

The fitting procedures greatly differ among au-
thors. While Simon et al. [67] trained an MLP with
three perceptrons in one hidden layer for 200,000 it-

erations, Tayfur et al. [75] used regularisation with
5 hidden neurons and 10,000 iterations. Neither of
them followed any specific criterion to set the num-

ber of neurons. For his part, Mata [40] tested NN ar-
chitectures with one hidden layer having 3 to 30 neu-
rons on an independent test data set. He repeated
the training of each NN model 5 times with different

initialisation of the weights.

Kao and Loh [30] proposed a two-step procedure:

first, the number of neurons was fixed whereas the
optimal amount of iterations was computed. Sec-
ond, NN models with different numbers of hidden

nodes were trained with the selected amount of iter-
ations, and the final architecture was chosen as the
one which provided the lowest error in a validation
set.

The results of the different studies are not compa-
rable, due to the specific features of each case. None-

theless, the lack of agreement on the training process
suggests that similar results can be obtained with
different criteria, provided enough care is taken to

avoid over-fitting. This is in accordance with Hastie
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et al. [25], who stated that in general it is enough

to set the architecture and compute the appropriate
regularisation parameter, or vice versa.

NN models have been used regularly in dam mon-

itoring in recent years. There is an increasing num-
ber of published studies, both in academic and pro-
fessional journals. The most recent ICOLD bulletin

on dam surveillance [27] mentions NN as an alter-
native to HST and deterministic models, although
it terms the tool as a “possible future alternative”
to be developed, which suggests that it is far from

being implemented in the daily practice.

2.5 Adaptive neuro-fuzzy systems (ANFIS)

Fuzzy logic allows inclusion of prior knowledge of the
phenomenon, as opposed to the NN, who “learn”

from the data. ANFIS models bring together the
flexibility and ability to learn of the NN with the
feasibility of interpretation of fuzzy logic. In fact,

ANFIS can be considered a class of NN [60]. They
are meant for highly non-linear, complex phenomena
which vary with time [28].

Among the different types of ANFIS schemes,
most previous references in dam monitoring used
Takagi-Sukeno (T-S) type, whose singularity is that
its output is a combination of linear functions [72].

As an exception, Opyrchal [47] used fuzzy logic to
qualitatively locate seepage paths in Tresna and Dobczyce
dams.

Fuzzy logic is based on the concept of member-
ship functions (MF). Each continuous variable Xj is
decomposed into Kj classes (for example, the reser-

voir level, which is continuous, can be transformed
into “low”, “medium” and “high”; see Figure 4). The
particularity of fuzzy logic is that these classes have
certain overlapping. Thus, a given reservoir level will

generally have a different degree of membership (DOM),
between zero and one, for more than one class. For
Gaussian MFs:

DOMjk

(
Xj
)

=
1

1 +

[(
Xj−νjk
λjk

)2]µjk

j = 1, ..., d; k = 1, ...,Kj

(14)

The number of classes for each input (Kj , which

can be different among inputs Xj) are prescribed by
the modeller, whereas the shape and position of their
membership functions are determined by the premise

parameters ν, λ and µ (Eq. 14), to be determined
during training.

The other essential component in an ANFIS model

is a set of rules, which take the form:

R1 : if X1 ∈MF11 ∧X2 ∈MF21 ∧ ... ∧Xd ∈MFd1 ⇒
f1 = p10 + p11X

1 + p12X
2 + ...+ p1dX

d

R2 : if X1 ∈MF11 ∧X2 ∈MF21 ∧ ... ∧Xd ∈MFd2 ⇒
fr = p20 + p21X

1 + p22X
2 + ...+ p2dX

d

...

RR : if X1 ∈MF1K1 ∧X2 ∈MF2K2 ∧ ...
... ∧Xd ∈MFdKd ⇒

fR = pR0 + pR1X
1 + pR2X

2 + ...+ pRdX
d

(15)

where p10...pRd are the consequent parameters,

to be adjusted during model training. It should be
noted that there can be up to

∏d
j=1K

j rules.

The model output is computed by means of 5
steps:

1. Compute the DOM of every input to each fuzzy
category (14).

2. Compute the product of the correspondentDOMjk,

in accordance with the rules. In ANFIS termi-
nology, these terms are referred to as the firing
strengths (wr; r = 1...R) for each rule:

w1 = DOM11 ·DOM21 · ... ·DOMd1

w2 = DOM11 ·DOM21 · ... ·DOMd2

...

wR = DOM1K1 ·DOM2K2 · ... ·DOMdKd

(16)

3. Normalise the firing strengths:

wr =
wr∑
wr

(17)

4. Compute the output of each rule, as a linear func-

tion of the consequent parameters:

Or = wrfr = wr
(
pr0 + pr1X

1 + pr2X
2 + ...+ prdX

d
)

r = 1...R

(18)

5. Combine the outputs of each rule to compute the
overall output of the ANFIS model:

Ŷ =

R∑

r=1

Or (19)

The final result is a combination of linear func-
tions of the input variables. The non-linearity is mod-

elled in the membership functions, which are typi-
cally Gaussian, as shown in the example of Figure
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4. Each membership function is determined on the

basis of 3 premise parameters, fitted with a hybrid
method, in which the following steps are alternated:

1. The membership functions are fixed, and the con-
sequent parameters are adjusted by least squares.

2. The premise parameters are modified by means
of the gradient descent method.

The criterion of the user is more important for

building ANFIS than for other kinds of models. Both
the prediction accuracy and the possibility of inter-
preting the results may vary greatly according to the

number of inputs (d), membership functions (Kj)
and rules (R). It should be noted that the number
of parameters in a first order T-S ANFIS model is:

3 ·
d∑

j=1

Kj + (d+ 1) ·
d∏

j=1

Kj (20)

Rankovic et al. [54] prioritised prediction accu-
racy over model interpretation, by considering lagged

values of both the input and output variables as pre-
dictors, resulting in an ANFIS model with d = 5,
Kj = 2, ∀j and R = 32. They used a zero-order

T-S model, in which fr = pr0, ∀r ∈ [1, R], and two-
sided Gaussian membership functions, defined by 4
parameters each. No attempt was made to interpret
the 32 rules.

On the contrary, Xu and Li [78] considered only
9 rules and could identify the worst environmental
conditions for crack opening in the Chencun Dam.

For his part, Demirkaya [18] chose d = 5 and
K = 4. Although he limited the number of rules to
4, the final model had 84 parameters.

ANFIS models can be as flexible and accurate
as NN, while allowing for introducing engineering
knowledge to some extent. If the amount of rules and
membership functions is low, the resultant model

can be interpreted. Furthermore, an ANFIS model

can be used for qualitatively describing dam behaviour,
especially if the output is “fuzzyfied” into linguistic

variables [78].

On the contrary, they may comprise a high num-
ber of parameters, even with a few rules, which re-

sults in a high risk of over-fitting and low inter-
pretability.

2.6 Principal component analysis (PCA) and
dimensionality reduction

PCA is a well known technique in statistics. It was
devised to transform a set of partially dependent
variables into independent features called principal

components (PCs), which are linear combination of
the original variables. It is acknowledged that the
first PCs contain the relevant information, whereas
the less influential correspond to the signal noise. It

has been used in dam monitoring for various pur-
poses.

Mata et al. [42] used PCA to select the most use-

ful thermometers to predict radial displacements in
an arch dam. They pointed out the potentiality of
this tool to select a group of sensors to be automa-

tised in a given dam.

Yu et al. [80] applied PCA to a group of sensors
to measure the opening of a longitudinal crack in an

arch dam. They reported that PCA was useful for
reducing the dimensionality of the problem, as well
as to separate the signal from the noise. They also
defined alarm thresholds as a function of the first

PCs. Cheng and Zheng [11] followed a similar pro-
cedure: they analysed the covariance matrix of the
outputs to separate the effect of the environmental

variables from the signal noise.

Similar applications were due to Chouinard et
al. [13], and Chouinard and Roy [12], who extracted

PCs from a set of outputs (radial displacements at
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pendulums) to better understand the behaviour of

the structure. They focused on the model interpreta-
tion, rather than on the prediction accuracy. In this
line, Nedushan [44] extracted PCs from a group of

sensors to analyse them jointly, as well as to identify
the correlations by means of stepwise linear regres-
sion. He defined a set of predictors (reservoir level,

temperature and time), and built linear regression
models by adding the most relevant one by one.

A limitation of PCA is that only linear relations

between variables are considered. If the dependency
is non-linear, it may lead to misinterpretation of
the results. Non-linear principal component analy-

sis (NPCA) can be an alternative, as showed by Loh
et al. [37] and Kao and Loh [30], who applied it by
means of auto-associative neural networks (AANN)

to predict radial displacements in an arch dam.

AANN are a special kind of NN models, formed
by 5 layers (Figure 5), which can be viewed as two

NN models put in series. The intermediate (bottle-
neck) layer has fewer neurons than the number of
model inputs, and the target outputs equal the in-

puts. Thus, the first part of the model reduces its
dimensionality, computing some sort of non-linear
PCA. The right-hand-side of the AANN is a con-
ventional NN whose inputs are the non-linear PCs.

Jung et al. [29] developed a methodology to iden-
tify anomalies in piezometric readings in an earth-fill

dam by means of moving PCA (MPCA), which is
conventional PCA applied to different time periods.
The goal was to detect significant variations in the

PCs over time, which would reveal a change in dam
behaviour.

PCA is mostly applied to input or output vari-

able selection. The first option may increase the pre-
diction accuracy, whereas the second can be useful
for managing very large dams with a large amount of

devices. For example, more than 8,000 instruments
were installed to control the behaviour of the Three
Gorges Dam [80].

2.7 Other ML techniques

There is a wide variety of ML algorithms which can
be useful for dam monitoring data analysis. Their ac-

curacy depends on the specific features of every pre-
diction task. Given that research on ML is a highly
active field, the algorithms are constantly improved
and new practical applications are reported each year.

Some of them have been applied to dam monitoring
analysis. They are considered in this section more
briefly than others, in accordance with their lower

popularity in dam engineering so far. This does not

mean that they can not offer advantages over the

methods described previously.

Support Vector Machines (SVM) stand among
the most popular ML algorithms nowadays. They
combine a non-linear transformation of the predic-

tor variables to a higher dimensional space, a lin-
ear regression on the transformed variables, and an
ε-insensitive error function that neglects errors be-

low a given threshold [68]. Cheng and Zheng [11]
used SVM in combination with PCA for short-term
prediction of the response of the Minhuatan gravity
dam. Although the results were highly accurate, the

computational time was high. Rankovic et al. [55]
built a behaviour model based on SVM for predict-
ing tangential displacements.

K-nearest neighbours (KNN) is a non-parametric
method which requires no assumptions to be made
about the physics of the problem; it is solely based on
the observed data. The KNN method basically con-

sists on estimating the value of the target variable as
the weighted average of observed outputs in similar
conditions within the training set. The similarity be-

tween observed values is measured as the Euclidean
distance in the d -dimensional space defined by the
input variables.

A clear disadvantage of this type of model is that

if the Euclidean distance is used as a measure of simi-
larity, all the predictors are given the same relevance.
Hence, including a low relevant variable may result

in a model with poor generalisation capability. As
a consequence, variable selection is a critical aspect
for fitting a KNN model.

Saouma et al. [65] presented a solution to the 6th

ICOLD Benchmark Workshop based on KNN. To
determine the similarity of observations, they used
only two significant predictors (the reservoir level

and a thermometer in the dam body) among the
eight available. This selection of variables was per-
formed by trial and error, although other criteria
exist, as described in the next section.

Stojanovic et al. [69] combined greedy MLR with
variable selection by means of genetic algorithms
(GA). Unlike HST, they considered all the observed

variables in various forms (e.g. h, h2, h3,
√
h, etc.).

They defined a methodology to select the best set of

predictors which could be useful to update the pre-
dictive model in case of missing variables. A similar
approach was followed by Xu et al. [77], though with
a smaller set of potential inputs.

Salazar et al. [61] performed a comparative study
among various statistical and ML methods, includ-
ing HST, NN, and others which had never been used

before in dam monitoring, such as random forests
(RF) or boosted regression trees (BRT). It was re-
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ported that innovative ML algorithms offered the
most accurate results, although no one performed

better for all 14 outputs analysed, which corresponded
to radial and tangential displacements and leakage
flow in an arch dam.

3 Methodological considerations for building

behaviour models

While each model has specific issues to take into ac-
count, there are also common aspects to consider
when developing a prediction model, regardless of
the technique. They are discussed in this section, in

relation with a selection of 59 studies correspond-
ing to 40 papers presented at conferences and in sci-
entific journals. It is not an exhaustive review: the

studies were selected on the basis of their relevance
and interest, following the authors’ criterion.

The Tables 2 and 3 summarise the main charac-
teristics of the studies reviewed. It was found that
most of them (38/59) considered radial displacements,

especially in arch dams (31/59). This reflects the
greater concern of dam engineers for this variable
and dam typology, although other indicators such
as leakage or uplift are acknowledged as equally rel-

evant for dam safety [39]. The lower frequency with
which the latter are chosen as target variables may
be partly due to their more complex behaviour, which

makes them harder to reproduce and interpret [39].
The HST and MLR methods, which have been the
only ones available for a long time, are not suitable
to model them [67], although some references exist

[8], [24].

3.1 Input selection

In previous sections, it was pointed out that the
model performance depended on the predictor vari-
ables considered. The range of options for variable

selection is wide. Most of the papers reviewed do not
use any specific method for variable selection, apart
from user criterion (e.g. [49]) or “a priori knowledge”

(e.g. [54]).

This issue has arisen in combination with the use

of NN [19], [56], [30], [37], [49], NARX [52], [37],
MLR [69] and ANFIS models [54].

First, the selection is limited by the available
data. While the reservoir level and the temperature

are usually measured at the dam site, other poten-
tially influential variables, such as precipitation, are
frequently not available. One of the advantages of
the HST method is that only the reservoir level is

required.

Second, it must be decided whether or not to use
the lagged values of the target variable for predic-
tion. The consequences of making predictions from
the output itself have already been mentioned, re-

gardless whether the observed or the estimated pre-
vious value is used. It can be concluded that the AR
models prioritise prediction accuracy over model in-

terpretation.

Third, the possibility of adding derived variables

(and which ones), such as moving averages and gra-
dients, can be considered. They can be set before-
hand, on the basis of engineering judgement, or se-

lected by means of some performance criterion from
a wide set of variables.

Finally, consideration should be given to include
non-causal variables in the model. For example, is
it appropriate to base the prediction of radial dis-

placements at a given location on the displacement
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recorded at another point of the dam? Will it im-

prove the model accuracy? What consequences would
it have in the interpretation of the results?

Some models like the HST are often used with a
set of specific predictors, and therefore variable se-
lection is restricted to the order of the polynomial

of the reservoir level, and the shape of the time de-
pendent functions. The opposite case is the NARX
method, which can be used with a high amount of
predictor variables.

Hence, the criterion to be used depends on the
type of data available, the main objective of the

study (prediction or interpretation), and the charac-
teristics of the phenomenon to be modelled. Again,
engineering judgement is essential to make these de-
cisions.

The selection of predictors may be useful to re-
duce the dimensionality of the problem (essential for

NARX models), as well as to facilitate the interpre-
tation of the results. PCA can be used for this pur-
pose [42], as well as AANN [37]. Some specific meth-
ods for variable selection in dam monitoring analysis

have been proposed, by means of backward elimina-
tion [? ] genetic algorithms (GA) [69], and singular
spectrum analysis (SSA) [37], although the vast ma-

jority of authors applied trial and error or engineer-
ing judgement.

3.2 Model interpretation

The main interest of this work focuses on model

accuracy: a more accurate predictive model allows
defining narrower thresholds, and therefore reducing
the number of false anomalies. Nonetheless, once a

value above (or below, if appropriate) the warning
threshold is registered, an engineering analysis of the
situation is needed to assess its seriousness. The abil-
ity of the model to interpret dam behaviour may be

useful for this purpose.

The HST method has been traditionally used to

identify the effect on the response of the dam of each
considered action: hydrostatic load, temperature and
time (e.g. [40]). However, it is clear that this analysis

is only valid if the predictor variables are indepen-
dent, which is not generally true [38], [66].

On the contrary, the ability of NN and simi-

lar models for interpreting dam behaviour is often
neglected. They are frequently termed “black box”
models, in reference to its lack of interpretability.

It turns out that NN models are well suited to
capture complex interactions among inputs, as well
as non-linear input-output relations. If an NN model

offers a much better accuracy than the HST for a

given phenomenon, it is probable that it does not

fulfil the hypothesis of HST (input independence,
linearity). Hence, it would be more appropriate to
extract information on the dam behaviour from the

interpretation of the NN model.

The effect of each predictor can be analysed by
means of ceteris paribus analysis [40]: the output

is computed for the range of variation of the vari-
able under consideration, while keeping the rest at
constant values. They can be set either to the cor-

respondent mean or to several other values, in order
to gain more detailed information on the dam re-
sponse. Analyses of this kind can be found in the

pertinent literature: Mata [40] calculated the effect
of the reservoir level on the radial displacements of
an arch dam for each season of the year, and the
effect of temperature when setting the pool level at

several constant values. Similar studies are due to
Santillán et al. [63], Simon et al. [67] and Popovici
et al. [53].

More complex algorithms have been proposed in
related fields to unveil the relevance of each input

in NN models (see for example [14], [22] and [46]),
which may be helpful in dam monitoring.

Therefore, even though NN and similar models
must be interpreted with great care, their ability to
extract information on the dam behaviour should
not be underestimated.

3.3 Training and validation sets

It is common and convenient to divide the available

data into two subsets: the training set is used to ad-
just the model parameters, whereas the validation
set is solely used to measure the prediction accu-
racy3. In statistics, this need is well known, since

it has been proven that the prediction accuracy of
a predictive model, measured on the training data,
is an overestimation of its overall performance [2].

Any subsetting of the available data into training
and validation sets is acceptable, provided the data
are independent and identically distributed (i.i.d.).

This is not the case in dam monitoring series, which
are time-dependant in general.

The amount of available data is limited, what
in turn limits the size of the training and valida-
tion sets. Ideally, both should cover all the range
of variation of the most influential variables. This

is particularly relevant for the training set of the
more complex models, as they are typically unable

3 the terminology is not universal; the data which are
not used to fit the model is sometimes called test or pre-
diction set.
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to produce accurate results beyond the range of the

training data [21].

It is not infrequent that reservoir level follow a
relatively constant yearly cycle by which situations

from the lowest to the highest pool level are pre-
sented each year. Temperature, which is the second
most influential variable on average, responds to a
more defined annual cycle. As a consequence, many

authors measure the size of the training and valida-
tion sets in years.

Moreover, dam behaviour models are used in prac-

tice to calculate the future response, on the basis of
the observed, normal functioning, and draw conclu-
sions about the safety state. Therefore, it seems rea-
sonable to estimate the model accuracy with a sim-

ilar scheme, i.e., to take the most recent data as the
validation set. This is the procedure used in the vast
majority of the reviewed papers (39/40), with the

unique exception of Santillán et al. [64], who made
a random division of the data.

Models based on the underlying physics of the
phenomenon and those with fewer parameters (HST,

IRF and MLR), are less prone to over-fitting. As a
result, a higher value can be given to the training
error. This is probably the reason why most studies

do not consider a validation set, but rather use all
the data for the model fit e.g. [42], [7] (Figure 6 (a)).

When a validation set is used, 10% of the avail-
able data is reserved for that purpose on average.

The higher frequency observed around 20% corre-
sponds to the papers dealing with the data from the
6th ICOLD Benchmark Workshop, where the split-

ting criterion was fixed by the organisers.

Tayfur et al. [75] reserved only one year for train-
ing, but explicitly mentioned that it contained all the
range of variation of the reservoir level. Some authors

proposed to set a minimum of 5 to 10 observations
per model parameter to estimate [71].

A fundamental premise for the successful imple-

mentation of any prediction model is that the train-
ing data correspond to a period in which the dam has
not undergone significant changes in its behaviour.
In practice, it is not easy to ensure that this condi-

tion is fulfilled. While the history of major repairs
and events is usually available, it is well known that
the behaviour in the first years of operation usu-

ally corresponds to a transient state, which may not
be representative of its response in normal opera-
tion afterwards [38]. Therefore, the use of data cor-
responding to the first period to adjust the model

parameters may lead to an increase in prediction er-
ror. Lombardi [38] estimated that 12 years from dam
construction are required for a data-based model to

be effective.

This issue can be checked by analysing the train-

ing error: ideally, errors shall be independent, with
zero mean and constant variance [71]. Some authors
compute some of these values for evaluating the good-
ness of fit (e.g. [67], [34], [30]).

On another note, a minimum amount of data is
necessary to build a predictive model with appropri-

ate generalisation ability. De Sortis and Paoliani [17]
run a sensitivity analysis of the prediction error as a
function of the training set size. They concluded that
10 years were necessary for obtaining stable results.

For their part, Chouinard and Roy [12] performed
a similar work on a dam set. Provided that most
of them were run-of-the-river small dams, which re-

mained full most of the time, the thermal effect was
the preponderant variable. As this is almost constant
every year, 5 years of data were enough for most

cases to achieve high accuracy.

According to the Swiss Comittee on Dams [71],
a minimum of “5 yearly cycles” should be available,

which suggests that they refer to filling-emptying
cycles throughout a year (to account for the ther-
mal variation). On the contrary, ICOLD [27] recom-

mended to set thresholds as a function of the predic-
tion error along “2 or 3 years of normal operation”.

Salazar et al. performed a similar analysis for 14

instruments in an arch dam [61], and reported that
the prediction accuracy was higher in some cases for
models trained over the most recent 5 years of data

(the maximum training set length was 18 years).

The size of the validation set ranges from 1 to 25
years (Figure 6 (b)), and depends on the amount of

data available, rather than on the type of model.

Such verifications regarding the training and test-

ing data sets are not performed in general in dam
monitoring analyses, probably due to a) the num-
ber of data available at a given time cannot be ar-

bitrarily increased, and b) the validation data shall
be the most recent. In practice, there is not agree-
ment on the appropriate criterion to define training
and validation sets. Consequently, the comparison

between models which predict different variables has
limited reliability, although it was sometimes consid-
ered [69], [56].

Again, engineering judgement is essential to as-
sess the appropriateness of the train and validation
sets, as well as the model performance.

3.4 Missing values

There are several potential sources of data incom-
pleteness, such as insufficient measurement frequency
[16], [42] or fault in the data acquisition system [41],
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Fig. 6 Training and validation sets in the papers reviewed. Left: ratio of validation data with respect to available data.
Right: training set size (years)

[69]. Although there is a tendency towards increas-
ing the quality of measurements and the frequency

of reading, there are many dams in operation with
long and low-quality monitoring data series to be
analysed. According to Lombardi [38], only a small

minority of the world population of dams feature
adequate, properly-interpreted monitoring records.
Curt and Gervais [16] showed the importance of con-

trolling the quality of the data on which the dam
safety studies are based, although they focused on
proposing future corrective measures rather than on
how to improve imperfect time series.

However, the vast majority of published articles
overlooked this issue. They limited to the selection
of some specific time period for which complete data

series were available. For example, Mata et al. [42]
only considered the period 1998-2002 for their anal-
ysis of the Alto Lindoso dam, due to the absence of

simultaneous readings of displacements and temper-
atures in subsequent periods. In general, the need
for simultaneous data of both the external variables
and the dam response reduces the amount of data

available for model fitting and limits the prediction
accuracy.

If the missing values correspond to one of the pre-

dictors, these models are inapplicable, which limits
their use in practice. If lagged variables are consid-
ered, there is also a need for equally time spaced

readings. The above mentioned adaptive system pro-
posed by Stojanovic et al. [69] can be applied in the
event of failure of one or several devices.

Faults in the data acquisition process can also re-
sult in erroneous readings [36] which should be iden-
tified and eventually discarded or corrected. During
model fitting, this would improve the model accu-

racy and increase its ability to interpret the dam

response. Once a behaviour model is built, it can be
used for that purpose [11].

Numerous statistical techniques have been devel-
oped to impute missing values. Their review is be-
yond the scope of this work, as they were not em-
ployed in the papers analysed. Moreover, their appli-

cation should be tailored to the specific features of
the problem, as well as to the nature of the variable
in question. For example, missing values of air tem-

perature can be reasonably filled from the average
historical temperature for the period, or interpolated
from available data [64]. By contrast, daily rainfall

may change largely between consecutive readings, so
that one missing value cannot be imputed with sim-
ilar confidence.

3.5 Prediction accuracy measurement

It is important to appropriately estimate the pre-
diction error of a model, since a) it provides insight
into its accuracy, b) it allows comparison of different
models, and c) it is used to define warning thresh-

olds.
There are various error measures to assess how

well a model matches the observed data, among which

the most commonly used are included in Table 1.
The result of using any of these indexes is fre-

quently equivalent when referred to a given predic-
tion task: the more accurate model will have a smaller

RMSE value, but also the lowest MSE, and higher
r and R2. However, they also present differences
which can be relevant, and are often not considered.

Provided that MSE = (RMSE)
2
, they can be

used indistinctly for model comparison. The only dif-
ference is that RMSE can be compared to the target

variable, given that both are measured in the same
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Table 1 Measures of accuracy. p = number of parameters of the model. ·̄ = mean

Error metric Formula

Mean squared error MSE =
∑N
i=1

(yi−F (xi))
2

N

Root mean squared error RMSE =

√∑N
i=1

(yi−F (xi))
2

N
=
√
MSE

Mean absolute error MAE = 1
N

∑N
i=1 |yi − F (xi)|

Correlation coefficient r =
∑N
i=1

(yi−y)(F (xi)−F (xi))
(
∑N
i=1

(yi−y)2)
0.5

(
∑N
i=1 (F (xi)−F (xi)))

0.5

Coefficient of determination R2 = 1−
∑N
i=1

(yi−F (xi))
2

∑N
i=1

(yi−ȳ)2

Standard error of estimate σε =

√∑
(yi−f(xi))

2

N

Mean absolute percentage error MAPE = 100
N

∑N
i=1

∣∣∣yi−F (x)

yi

∣∣∣

Maximum absolute error MaxAE = |ε|max

Adjusted R2 R2
adj = R2 − (1−R2) p

N−p−1

Sum of squared error SSE =
∑N
i=1 (yi − F (xi))

2

Average relative variance ARV =
∑N
i=1

(yi−F (xi))
2

∑N
i=1

(yi−ȳ)2 = 1−R2

Mean error ME = 1
N

∑N
i=1 (yi − F (xi))

units. It should be noted that they are computed on
the basis of the squared residuals, therefore they are
sensitive to the presence of outliers, i.e., a few large

prediction errors. In this sense, MAE could be con-
sidered a better choice, provided that it shares the
advantage of RMSE (it is measured in the same

units as the output), and not its drawback. Mind-
ful of this fact, both can be used interchangeably, if
the analysis is complemented with a graphical ex-
ploration of the model fit, or other error measures.

The drawback to both MSE and RMSE is that
they are not suitable for comparing models fitting
different variables, provided that they do not con-

sider neither the mean nor the deviation of the out-
put.

This limitation can be overcome by using the cor-
relation coefficient r, since r ∈ [−1, 1]. On the con-
trary, it is not exactly an error rate, but rather an in-
dex of the strength of the linear relationship between

observations and predictions. In other words, it in-
dicates to what extent one variable increases as the
other does, and vice versa. It can be checked that the

value of r for a prediction calculated as Ŷ = AY +B
is equal to 1 for A 6= 0, while the error can be very
large and will generally be non-zero (unless A = 1
and B = 0) [32]. As an example, Rankovic et al. [56]

considered r and r2, as well as MAE and MSE.

While the results were similar for the training and
validation sets in terms of r and r2, both MAE and
MSE were much greater in the validation set (as

much as 7 times greater). These results may reflect
some degree of over-fitting.

If r is used as a measure of goodness of fit, its
value always increases with increasing number of

model parameters (except in the highly unlikely event
that the functions are completely independent of
output). The Radj coefficient can be used (e.g. [69],
[34]) to account for the number of parameters of each

model.

As an alternative, R2, or its equivalent ARV can
be chosen. They have the advantage over the cor-
relation coefficient of being sensitive to differences

in the means and variances of observations and pre-
dictions, while maintaining the ability to compare
models fitted to different data [61].

Finally, it should be noted that the reading er-

ror of the devices (εr) may be relevant when predic-
tions of variables of different nature are compared,
although it is often ignored. It cannot be expected

to obtain a model with an error below the measure-
ment resolution [80]. Popovici et al. [53] reported
that the overall accuracy of NN models was lower
for tangential than for radial displacements, and at-

tributed it to the lower range of variation of the for-
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mer. It is possible that the reading error (which in

principle should be the same for tangential and ra-
dial displacements) were relevant in the first case
and negligible in the second.

Salazar et al. found that models with relatively
high ARV corresponded with very low MAE, close
to εr [61].

Reading error should always be considered for
evaluating model accuracy. One possibility would be
to neglect the errors below that value before comput-
ing the prediction accuracy, by means of substituting

(yi − F (xi)) by |yi − F (xi)| − εr, in the calculation
of MSE, RMSE, r and R2. Similarly, MAE could
be computed as:

MAE∗ =
1

N

N∑

i=1

(|yi − F (xi)| − εr) (21)

It is convenient to compute more than one er-
ror rate, especially if the aim is to compare models

predicting variables of different kind. In addition, a
graphical analysis of the error is highly advisable.

3.6 Practical application

Despite the increasing amount of literature on the
use of advanced data-based tools, very few examples
described their practical integration in dam safety

analysis. The vast majority were limited to the model
accuracy assessment, by quantifying the model error
with respect to the actual measured data. Only a

few cases dealt with the interpretation of dam be-
haviour, by identifying the effect of each of the ex-
ternal variables on the dam response (e.g. [40], [17],
[35]).

A detailed analysis of the results is always conve-
nient [26], especially when complex models are em-
ployed. However, improvements in instrumentation

and data acquisition systems allow the implementa-
tion of automatic warning generation schemes. The
information provided by reliable automated systems,
based on highly accurate models, can be a great sup-

port for decision making regarding dam safety [27],
[31].

To achieve that goal, the outcome of the predic-

tive model must be transformed into a set of rules
that determine whether the system should issue a
warning. In turn, these rules should be based on an

overall analysis of the most representative instru-
ments: a single value out of the normal-operation
range will probably correspond to a reading error, if
other instruments show no anomalies. However, the

coincidence of out-of-range values in several devices

may correspond to some abnormal behaviour. This is

the idea behind the method proposed by Cheng and
Zheng [11], which features a procedure for calculat-
ing normal operating thresholds (“control limits”),

and a qualitative classification of potential anoma-
lies: a) extreme environmental variable values, b)
global structure damage, c) instrument malfunctions
and d) local structure damage.

A more accurate analysis could be based on the
consideration of the major potential modes of failure
to obtain the corresponding behaviour patterns and
an estimate of how they would be reflected on the

monitoring data. Mata et al. [43] employed this idea
to develop a methodology that includes the following
steps:

– Identification of the most probable failure mode.
– Simulation of the structural response of the dam

in normal and accidental situations (failure) by
means of finite element models.

– Selection of the set of instruments that better

identify the dam response during failure.
– Construction of a classification rule based on lin-

ear discriminant analysis (LDA) that labels a set
of monitoring data as normal behaviour or incip-

ient failure.

This scheme can be easily implemented in an au-

tomatic system. By contrast, it requires a detailed
analysis of the possible failure modes, and their nu-
merical simulation to provide data with which to

train the classifier. Moreover, the finite element model
must be able to accurately represent the actual be-
haviour of the dam, which is frequently hard to achieve.

4 Conclusions

There is a growing interest in the application of in-

novative tools in dam monitoring data analysis. Al-
though only HST is fully implemented in engineering
practice, the number of publications on the applica-

tion of other methods has increased considerably in
recent years, specially NN.

It seems clear that the models based on ML algo-
rithms can offer more accurate estimates of the dam

behaviour than the HST method in many cases. In
general, they are more suitable to reproduce non-
linear effects and complex interactions between in-

put variables and dam response.

However, most of the papers analysed refer to
specific case studies, certain dam typologies or de-
termined outputs. More than a half of them focus

on radial displacements in arch dams, although this



Data-based models for the prediction of dam behaviour 17

typology represents roughly 5% of dams in operation

worldwide.

Moreover, the vast majority of articles overlooked

the data pre-process. It is implicitly assumed that
the monitoring data are free of reading errors and
missing values, whereas that is not the case in prac-

tice. The development of criteria to fix imperfect
data would allow to take advantage of a large amount
of stored dam monitoring data.

An useful data-based algorithm should be ver-
satile to face the variety of situations presented in
dam safety: different typologies, outputs, quality and

volume of data available, etc. Data-based techniques
should be capable of dealing with missing values and
robust to reading errors.

These tools must be employed rigorously, given
their relatively high number of parameters and flex-

ibility, what makes them susceptible to over-fit the
training data. It is thus essential to check their gen-
eralisation capability on an adequate validation data
set, not used for fitting the model parameters.

In this sense, most of the studies reviewed did not
include an evaluation of the predictive model on an

independent data set, and there are very few exam-
ples that used more than 20% of the data for valida-
tion. This raises doubts about the generalisation ca-

pability of these models, in particular of those more
strictly data-based, such as NN or SVM. It should
be reminded that the main limitation of these meth-
ods is their inability to extrapolate, i.e., to generate

accurate predictions outside the range of variation
of the training data.

Before applying these models for predicting the
dam response in a given situation, it should be checked
whether the load combination under consideration

lies within the values of the input variables in the
training data set. Verifications of this kind were not
reported in the reviewed papers, although they would
provide insight into the reliability of the predictions.

From a practical viewpoint, data-based models
should also be user-friendly and easily understood by

civil engineering practitioners, typically unfamiliar
with computer science, who have the responsibility
for decision making.

Finally, two overall conclusions can be drawn from
the review:

– ML techniques can be highly valuable for dam
safety analysis, though some issues remain un-

solved.
– Regardless of the technique used, engineering judge-

ment based on experience is critical for building
the model, for interpreting the results, and for

decision making with regard to dam safety.
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55. Ranković V, Grujović N, Divac D, Milivojević
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Table 2: Review summary. Case studies

Id Author Year Dam(s) Country Typology Output # Outputs

1 Breitenstein [8] 1985 Limberg, Mooser,
Drossen

Switzerland ARC, GRA,
ARC

RAD 7

2 Breitenstein [8] 1985 Limberg, Mooser,
Drossen

Switzerland ARC, GRA,
ARC

LEAK 6

3 Guedes [24] 1985 São Simão Brazil EF+GRA RAD 1

4 Guedes [24] 1985 Água Vermelha Brazil EF+GRA RAD 1
5 Guedes [24] 1985 Funil Brazil ARC PIEZ 1
6 Guedes [24] 1985 Sobradinho Brazil EF+GRA JOINT 1
7 Guedes [24] 1985 Itaipú Brazil GRA LEAK 1
8 Bonelli [7] 2001 Alzitone, Cham-

boux, La Verne
France EF PIEZ 9,6,4

9 Bonelli [4] 2001 Schelegeis Austria ARC RAD 1
10 Carrere [9] 2001 Schelegeis Austria ARC RAD 1
11 Saouma [65] 2001 Schelegeis Austria ARC RAD 1
12 Palumbo [48] 2001 Shclegeis Austria ARC RAD 1
13 Nedushan [44] 2002 Chute-à-Caron Canada GRA RAD, TAN,

VERT
1,1,1

14 Piroddi [52] 2003 Schelegeis Austria ARC RAD 1
15 Tayfur [75] 2005 Jeziorsko Poland CFRD PIEZ 4
16 De Sortis [17] 2006 Ancipa Italy BUT RAD 5
17 De Sortis [17] 2006 Sabbione Italy BUT RAD 3
18 De Sortis [17] 2006 Malga Bissina Italy BUT RAD 5
19 S. Caro [62] 2007 El Atazar Spain ARC RAD 46
20 Léger [33] 2007 Schelegeis Austria ARC RAD 1
21 Su [70] 2007 ? China AG VERT 1
22 Panizzo [49] 2007 Pieve di Cadore Italy AG RAD 1
23 Lombardi [39] 2008 ? ? ARC RAD 1
24 Lombardi [39] 2008 ? ? ARC LEAK 1
25 Bonelli [5] 2007 ? ? EF PIEZ 14
26 Bonelli [6] 2008 ? ? EF PIEZ 16
27 Yu [80] 2010 Chencun China AG CRACK 5
28 Perner [51] 2010 Zillergruendl Austria ARC RAD 2
29 Demirkaya [18] 2010 Schelegeis Austria ARC RAD 1
30 Riquelme [59] 2011 La Baells Spain ARC RAD 1
31 Mata [40] 2011 Alto Rabagão Portugal ARC RAD 1
32 Rankoviĉ [54] 2012 Bocac Bosnia Herzegovina ARC RAD 2
33 Xu [77] 2012 Chencun China AG CRACK 1
34 Demirkaya [19] 2012 Schelegeis Austria ARC RAD 1
35 Demirkaya [19] 2012 Schelegeis Austria ARC RAD 1
36 Cheng [11] 2013 Mianhuatan China GRA RAD 12
37 Cheng [11] 2013 Mianhuatan China GRA UP 16
38 Popovici [53] 2013 Gura Râului Romania BUT RAD, TAN,

ROCK
2, 2, 3

39 Tatin [73] 2013 Castelnau France GRA RAD 1
40 Tatin [73] 2013 Castelnau France GRA RAD 1
41 Li [34] 2013 Wanfu China ARC RAD 4
42 Li [34] 2013 Wanfu China ARC RAD 4
43 Simon [67] 2013 Pareloup France ARC PIEZ 1
44 Simon [67] 2013 Bissorte France GRA LEAK 4
45 Simon [67] 2013 Monteynard France ARC RAD 1
46 Simon [67] 2013 Monteynard France ARC RAD 1
47 Nourani [45] 2013 Sahand Iran EF PIEZ 4
48 Kao [30] 2013 Fei-Tsui Taiwan ARC RAD 13
49 Kao [30] 2013 Fei-Tsui Taiwan ARC RAD 13
50 Kao [30] 2013 Fei-Tsui Taiwan ARC RAD 13
51 Mata [42] 2013 Alto Lindoso Portugal ARC RAD 5
52 Jung [29] 2013 ? USA EF PIEZ 1
53 Stojanovic [69] 2013 Bocac Bosnia Herzegovina ARC RAD 1
54 Rankoviĉ [56] 2014 Iron Gate 2 Serbia/ Romania EF+GRA PIEZ 2
55 Rankoviĉ [56] 2014 Iron Gate 2 Serbia/ Romania EF+GRA PIEZ 2
56 Santillán [64] 2014 La Baells Spain ARC LEAK 1
57 Salazar [61] 2014 La Baells Spain ARC RAD, TAN,

LEAK
5, 5, 4

58 Rankoviĉ [55] 2014 Iron Gate 2 Serbia/ Romania EF+GRA TAN 2
59 Tatin [74] 2015 Eguzon, Izourt,

Roselend, Tignes,
Vouglans, Bissorte,
Gittaz, Sarrans

France GRA,ARC,
BUT

RAD 1

Continued on next page
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Table 2 – continued from previous page

Id Author Year Dam Country Typology Output # Outputs

Typology: ARC = arch; GRA = gravity; EF = earth-fill; AG = arch-gravity; BUT = buttress; CFRD = concrete-faced
rockfill dam; ? = Not specified. Outputs: RAD= radial displacements; LEAK = leakage flow; PIEZ = pore pressure; JOINT
= joint opening; TAN = tangential displacements; VERT = vertical displacements; UP = uplift pressure; ROCK = rockmeter
displacements; CRACK = crack opening.
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Table 3: Review summary. Methods

Id Model Inputs Training
set
(years/
# samples)

Validation
set
(years/
# samples)

%Validation
data

Error metric
(see Table 1)

1 MLR h, S, t, Tair, ∂(Tair), ∂(h) 10/14600 0.0/ 0% R2

2 MLR h 10/14600 0.0/ 0% R2

3 MLR h,mav(Tair) 1/103 0.0/ 0% r
4 MLR h,mav(Tair) 0.5/63 0.0/ 0% r
5 MLR t,mav(h) 2/230 0.0/ 0% r
6 MLR t,mav(Tc) 2.5/66 0.0/ 0% r
7 MLR t,mav(h) 0.5/86 0.0/ 0% r
8 IRF h, lag(h), P, lag(P ), t Var/Var 0.0/ 0% -
9 IRF h, Tair 7/2557 2.0/730 22% -
10 HST h, Tair 7/2557 2.0/730 22% r, R2, σε
11 KNN h, Tc 7/2557 2.0/730 22% r, R2, σε
12 NARX h, Tair, Tc, lag(h), lag(Tc), lag(Tair) 7/2555 2.0/730 22% RMSE
13 NN Tc, t 1.5/548 1.5/548 50% R2

14 NARX h, Tair, Tc, lag(h), lag(Tc), lag(Tair) 7/2555 2.0/730 22% MSE
15 NN h 1/26 2.0/52 67% RMSE, MAE, R2

16 HST h, S, t 2 to 15/730
to 5475

0.0/ 0% r, σε,
σε
D/2

17 HST h, S, t 5/1825 0.0/ 0% r, σε,
σε
D/2

18 HST h, S, t 9/3285 0.0/ 0% r, σε,
σε
D/2

19 MLR h,mav(h), S, Tair,mav(Tair) 24.5/8943 0.0/ 0% σε, MSE
20 HTT h, Tc, t 5/1825 0.0/ 0% r
21 WNN h, S, t 11/44 2.0/8 15% MAE
22 NN h, lag(rad), Tair, Tc 7/2555 0.0/ 0% R2, pdf(ε), MSE
23 IRF h, lag(h), lag(rad), Tair 4/? 0.0/ 0% σε
24 IRF h, lag(h), lag(out) 5/? 0.0/ 0% -
25 IRF h, lag(P ) 3/167 0.0/ 0% R2

26 IRF h, hd, lag(P ) var/var 0.0/ 0% R2

27 HST h, S, t 10/1200 0.0/ 0% r
28 HYB h, Tc, t 22/8030 0.0/ 0% -
29 ANFIS h, Tair, Tc 6/2044 1.0/365 15% r, RMSE, MAE
30 NN h, T,mav(T ), lag(out) 18/706 12.0/470 40% MAPE
31 NN h, S 23/914 1.8/69 7% MAE, MaxAE, r
32 ANFIS lag(h), lag(S), lag(out) 9/657 2.0/140 18% r, MAE, RMSE
33 ANFIS Tair, h 15/400 ?/? 0% RMSE
34 MLR h, Tair, Tc, lag(h), lag(Tair), lag(Tc) 7/2555 2.0/730 22% ME, σε, R2

35 NN h, Tair, Tc, lag(h), lag(Tair), lag(Tc) 7/2555 2.0/730 22% ME, σε, R2

36 PCA,
SVM

h, Tair, P 4.2/1525 0.1/30 2% -

37 PCA,
SVM

h, Tair, P 3/900 0.2/56 6% -

38 NN t, h, Tair, lag(h),mav(Tair) 14/? 2.0/? 13% r, R2, σε
39 GRAD h, S, t, IRF, Tair, Tw 12/? 0.0/ 0% σε
40 SLICE h, S, t, IRF, Tair, Tw 12/? 0.0/ 0% σε
41 HTT h, S, Tc 3.2/169 0.4/20 11% R2

adj , σε, pdf(ε)

42 ECM h, S, Tc, ε(t− 1) 3.2/169 0.4/20 11% R2
adj , σε, pdf(ε)

43 NN h, S, t ?/429 0.0/ 0% σε, MSE
44 IRF+NN h, S, t, Tair, IRF (P ), IRF (M) ?/? 0.0/ 0% R2

45 NN h, S, t, IRF (Tair) ?/? 0.0/ 0% σε
46 HSTT h, S, t, IRF (Tair) ?/? 0.0/ 0% σε
47 NN h, hd, lag(P ) 1.1/58 0.4/18 24% R2

48 NN h, Tc 22/8120 0.3/62 1% R2, pdf(ε), MSE
49 NARXNN h, lag(h), lag(out) 22/8120 0.3/62 1% R2, pdf(ε), MSE
50 AANN lag(rad) 22/8120 0.3/62 1% R2, pdf(ε), MSE
51 HTT h, Tc 5/95 0.0/ 0% R2

adj , σε, εmax,

εmin, SSE
52 MPCA h 6/4380 0.0/ 0% -
53 MLR h, Tc, Tair, P, t 6/2550 1.0/365 13% R2

adj , RMSE

54 NN hd, lag(hd) 8/163 1.0/20 11% r, r2, MSE, MAE
55 MLR hd, lag(hd) 8/163 1.0/20 11% r, MSE, MAE
56 NN h, Tair, ∂(h), ∂(Tair) 25.5/918 3.0/103 10% RMSE
57 NN,

MARS,
RF, BRT,
SVM

h, Tair, S, t,mav(h),mav(Tair), P, ∂(h) 18/600 10.0/400 40% MAE, ARV

58 SVM h, hd, lag(h), lag(hd), lag(out) 11/573 3.0/156 21% r, MAE, MSE

Continued on next page



24 Fernando Salazar et al.

Table 3 – continued from previous page

Id Model Inputs Training
set
(years/
# samples)

Validation
set
(years/
# samples)

%Validation
data

Error metric
(see Table 1)

59 GRAD h, S, t, IRF, Tair, Tw 8/? 2/? 20% σε

Models: MLR = multilineal regression; IRF = impulse response function; HST = hydrostatic seasonal time; KNN = k-
nearest neighbours; NN = neural networks; WNN = wavelet neural networks; NARX = non-linear autoregressive exogenous;
HTT = hydrostatic thermal time; HYB = hybrid; ANFIS = adaptive neuro-fuzzy system; PCA = principal component analysis;
MPCA = moving PCA; SVM = support vector machine; ECM = error correction model; HSTT = hydrostatic seasonal thermal
time; NARXNN = non-linear autoregressive exogenous neural network; AANN = auto-associative neural network; RR = robust
regression; MARS = multivariate adaptive regression splines; RF = random forest; BRT = boosted regression trees; WNN =
wavelet neuran networks; ECM = error correction method. Inputs: h = upstream pool level; S = season; t = time; ∂(·) = time
derivative; Tc = concrete temperature; Tair = air temperature; Tw = water temperature; IRF (·) = impulse response function;
lag(·) = lagged variable; P = precipitation; out = output; mav(·) = moving average; hd = downstream pool level; M = snow
melt; pdf(ε) = probability density function of error.
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Abstract

A discussion on the paper by Tatin et al. (2015) is presented. The paper described an

innovative statistical model to interpret dam behaviour, which was validated with artificial

data and then applied to seven dams in operation. This discussion provides several comments

about the model performance evaluation, as well as suggestions for further analysis of the

monitoring data.
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1. Discussion

Tatin et al. (hereinafter “the authors”) presented an innovative statistical method to

interpret dam behaviour. It is based on the traditional HST (Hydrostatic, Season, Time)

[1]. Likewise the more recent Thermal HST (HSTT) [2], the new method considers the actual

temperature measurements, but also the water temperature and the reservoir level variation

in a simplified manner [3]. The result is the method called HST-Grad.

We agree with the authors in that the thermal effect is important in concrete dams, and

particularly that caused by the presence of water. In this sense, the new tool constitutes an

advance over HST and HSTT, largely maintaining the simplicity of both methods. Nonethe-

less, it is noteworthy that recent studies have revealed that other phenomena such as solar

radiation, shading [4], [5] and night and evaporative cooling [6], are also relevant to the
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Simulation
Boundary conditions

Air temperature Water temperature Reservoir level

1 Variable - Empty (constant)

2 Variable Variable Full (constant)

3 Variable Variable Variable

Table 1: Simulations performed by the authors for the heuristic case [3].

temperature field in the dam body and thus affect the displacement field.

The authors admit the inaccuracy of assuming that the thermal load is homogeneous in

the upstream face. In our opinion, the situation in the downstream face may be similar in

the general case, due to solar radiation and shading [6].

The new method was validated by means of its application to an artificially-generated

time series of dam displacements. These data were obtained from a bi-dimensional finite

element (FE) model of the Izourt Dam, a 44-m height gravity dam. Then the performance

of the new method was assessed by considering actual monitoring data from seven dams in

operation. In both cases (“heuristic” and “real” cases from here on, following the authors’

terminology in [3]), the HST-Grad model was compared to HST and HSTT.

The HST-Grad model resulted in smaller residuals in most cases, and thus offered a more

accurate identification of dam behaviour. The main advantage of these tools is their ease of

interpretation, as opposed to others based on machine learning, which nonetheless proved

to be highly accurate in recent studies [7], [8], [9].

For the heuristic case, three simulations were performed in [3], whose features are sum-

marised in Table 1.

The result of this analysis showed a better fit of the HST-Grad model, in particular for

the Simulation 3. This is coherent with the construction of the three models, and with the

boundary conditions applied in each simulation.

The results for the heuristic case could be considered as an estimate of the lower boundary

of the residuals that can be expected with each model in practice (Simulation 3). In other

words, the error resulting from the application of HST-Grad model to a real case should

increase with respect to that shown in Fig. 5 in [3] due to the simplifications introduced

2



in the FE model: the actual water temperature and its spatial and temporal variation, the

actual air temperature, the unconsidered thermal effects, and the thermal inertia of the

water mass (in the case presented, the time delay to account for heat transfer between air

and water was chosen arbitrarily). Furthermore, the measurement error should be added.

The authors presented the results for the real cases as the standard deviation of the

residuals (mm), unlike in the heuristic case, where they were shown “as the ratio (in %)

between the standard deviation of the residuals and the amplitude of the displacement

analysed”. In our opinion, it is more convenient to present the results in relative terms, for

three reasons:

• In practice, the relevance of the residual depends on its relationship with the displace-

ment amplitude. The same applies to model comparison.

• A dimensionless residual allows comparison between different dams, whose behaviour

depend on several factors, including the dam typology and height.

• The use of the same goodness-of-fit index would ease comparison between the results

for the heuristic and the real cases correspondent to Izourt Dam.

We found particularly relevant the similarity of the results for the calibration and forecast

periods (Fig. 12 in [3]). This indicates that the residual for the training period is a good

indicator of the general model accuracy. For the same reason, a deeper analysis would be

needed for the Izourt Dam, which was the only exception: the standard deviation of the

residuals increased between the calibration (0.5 mm) and the forecast period (0.8 mm; Fig.

12 in [3]). The description provided for Izourt Dam does not suggest a potential explanation,

given that it is the lowest (44 m) and simplest (rectilinear gravity dam) of the seven dams

considered.

We analysed the results published by the authors by extracting comparable values from

Fig. 5 and Fig. 12 in [3]. They are showed in Table 2.

It should be noted that the results largely differ between the heuristic and the real cases

in terms of relative residual reduction (75 to 10%). However, the difference in absolute value

is much less relevant (0.1 mm).

In our opinion, though the heuristic case is highly valuable for validation purposes, the

HST-Grad model assessment should be mostly based on the results for the real cases. For
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Case
Residuals standard deviation (mm) HST-Grad residual reduction

HSTT HST-Grad Absolute (mm) Relative (%)

Heuristic

(Simulation 3) 0.2 0.05 0.15 75

Real 0.5 0.45 0.05 10

Table 2: Results of HST-Grad for Izourt Dam. Approximated values extracted from [3]. The displacements

amplitude was supposed to be 5.0 mm (Fig. 8 in [3])

the seven dams considered, the residual standard deviation obtained with HST-Grad was

around 10-15% lower than that of HSTT (Fig. 12 in [3]).

A more detailed analysis of the contribution of each source of error for the real cases

would be highly interesting, as well as the influence of other specific dam features: typology,

height, location, orientation, and reservoir operation. Regarding the latter, it would be

helpful to know the reservoir level variation for the analysed dams, both in the calibration

and forecast periods, as well as the reading frequency (the amount of data available). This

could help the interpretation of the results of the comparative study, once the heuristic case

confirmed that the relative performance of HSTT and HST-Grad was strongly influenced by

the reservoir level variation.

We also consider that a four-way comparison between the FE model, the monitoring

data, and the HSTT and HST-Grad estimates for Izourt Dam would be highly valuable. It

might allow evaluation of the advantages and disadvantages of either model. FE models can

be useful, especially for gravity dams that can be modelled in 2D. They have been previously

applied for interpreting dam behaviour even for buttress dams, which are more complex and

must be modelled in 3D [10].

2. Conclusion

The HST-Grad method presented by the authors constitutes an improvement over other

currently used statistical methods to interpret dam behaviour. However, it is our belief that

the reduction in the residuals deviation with respect to HSTT will generally be much closer

to that obtained for the real cases (10-15%), than for the heuristic one (75%).
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Abstract

Predictive models are essential in dam safety assessment. Both deterministic and statistical
models applied in the day-to-day practice have demonstrated to be useful, although they
show relevant limitations at the same time. On another note, powerful learning algorithms
have been developed in the field of machine learning (ML), which have been applied to solve
practical problems. The work aims at testing the prediction capability of some state-of-the-
art algorithms to model dam behaviour, in terms of displacements and leakage. Models based
on random forests (RF), boosted regression trees (BRT), neural networks (NN), support
vector machines (SVM) and multivariate adaptive regression splines (MARS) are fitted to
predict 14 target variables. Prediction accuracy is compared with the conventional statistical
model, which shows poorer performance on average. BRT models stand out as the most
accurate overall, followed by NN and RF. It was also verified that the model fit can be
improved by removing the records of the first years of dam functioning from the training set.

Keywords: Dam monitoring, Dam safety, Data analysis, Boosted regression trees, Neural
networks, Random forests, MARS, Support vector machines, Leakage flow

1. Introduction and background

Dam safety assessment is a complex task due to the uniqueness of each of such structures
and their foundations. It is commonly based on three main pillars: visual inspection, engi-
neering knowledge and a behaviour model. The actual response of the dam is compared with
the predictions of the model, with the aim of detecting anomalies and preventing failures.
Current predictive methods can be classified as follows [1]:

• Deterministic: typically based on the finite element method (FEM), these methods
calculate the dam response on the basis of the physical governing laws.

• Statistical: exclusively based on dam monitoring data.
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• Hybrid: deterministic models which parameters have been adjusted to fit the observed
data.

• Mixed: comprised by a deterministic model to predict the dam response to hydrostatic
pressure, and a statistical one to consider deformation due to thermal effects.

It is difficult to predict dam behaviour with high accuracy. Numerical models based
on the FEM provide useful estimates of dam movements and stresses, but are subject to
a significant degree of uncertainty in the characterisation of the materials, especially with
respect to the dam foundation. Other assumptions and simplifications have to be made,
regarding geometry and boundary conditions. These tools are essential during the initial
stages of the life cycle of the structure, provided that there are not enough data available
to build data-based predictive models. However, their results are often not accurate enough
for a precise assessment of dam safety.

This is more acute when dealing with leakage in concrete dams and their foundations,
due to the intrinsic features of the physical process, which is often non-linear [2], and re-
sponds to threshold and delayed effects [3], [4]. Numerical analysis cannot deal with such a
phenomenon, because comprehensive information about the location, geometry and perme-
ability of each fracture would be needed. As a result, deterministic models are not used in
practice for the prediction of leakage flow in concrete dams [1].

Many of the dams in operation have a large number of monitoring devices, recording the
evolution of various indicators such as movements, leakage flow or the pore water pressure,
among others. Although there are still many dams with few observed data, there is a clear
trend towards the installation of a larger number of devices with higher data acquisition
frequency [5]. As a result, there is an increasing amount of information on the dam perfor-
mance, which makes it interesting to study the ability of machine learning (ML) tools to
process them, build behaviour models and extract useful information [6].

The paper assesses the potential of some state-of-the-art ML techniques to build mod-
els for the prediction of dam behaviour. The results are compared with the conventional
statistical method.

1.1. Statistical models

The most popular data-driven approach for the prediction of dam behaviour is the
hydrostatic-seasonal-time (HST) method, characterised by taking into account three effects:

• A reversible effect of the hydrostatic load.

• A reversible seasonal thermal influence of the temperature.

• An irreversible term due to the evolution of the dam response over time.

This assumption is coherent with the observed behaviour of many concrete dams in terms
of displacements. However, it has also been applied to other variables, such as uplifts and
leakage [3]. Similar schemes have been used for rock-fill dams, although it is acknowledged
that the temperature is not relevant, and that the irreversible effect of settlements prevails
on the elastic response to hydrostatic load. Furthermore, rainfall may have a strong influence
on leakage [3].

The main drawbacks of HST and other methods based on linear regression are the fol-
lowing:
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• The functions have to be defined beforehand, and thus may not represent the true
behaviour of the structure [3].

• The governing variables are supposed to be independent, although some of them have
been proven to be correlated [7].

• They are not well-suited to model non-linear interactions between input variables [2].

1.2. Advanced data analysis in dam monitoring

The examples of application of innovative techniques to improve the results of HST are
becoming more frequent in recent years. As an example, Bonelli and Radzicki [8] used an
impulse-response function for predicting the pore pressure in the dam body. The method pro-
vided accurate results in the test cases, showing the hysteresis effect by which the pore pres-
sure is lower during filling than it should be in a stationary state, and vice versa. Nonetheless,
given that it makes a strong assumption on the characteristics of the phenomenon, it is re-
stricted to specific processes.

Li et al. [9] proposed a method to improve HST based on cointegration theory. They
tested the stationarity of the monitoring data series before fitting a multi-linear regression
(MLR) model.

One obvious weakness of linear regression is that it cannot reproduce nonlinear relations
between variables. This problem is typically overcome by introducing higher order terms of
the covariates. Neural networks (NN) constitute a powerful alternative to solve this issue.
Their flexibility and capability to adapt to highly complex interactions have made them
popular in several fields of engineering, including dam monitoring (see for example [3], [10],
[11], and [12]).

However, it should be noted that NN have some drawbacks:

• The result depends on the initialisation of the weights.

• The best network architecture (number of hidden layers and neurons in each layer) is
not known beforehand.

• The model is prone to over-fitting.

• The training process may reach a local minimum of the error function.

Several techniques have been developed to overcome these shortcomings, which in general
lead to an increase in the computational cost [13]. In spite of this, NN stand out as the most
popular ML tool in dam engineering, and the results are promising [3]. Further models have
been also applied to dam monitoring, such as ANFIS (adaptive network-based fuzzy inference
system) models [14], principal component analysis [6], NARX (nonlinear autoregressive with
exogenous input) models [15] or K-nearest neighbours [16]. However, these tools are rarely
used in practice, where HST still prevails. Moreover, most of the previous studies are
limited to one single variable of specific dams [11], [12]. Hence, the results are not generally
applicable.
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1.3. Objectives

The study aims to assess the prediction accuracy of some ML tools, most of which have
been seldom used in dam engineering. Specifically, the algorithms selected are: random
forests (RF), boosted regression trees (BRT), support vector machines (SVM) and multi-
variate adaptive regression splines (MARS). Both HST and NN were also used for comparison
purposes. Similar analyses have been performed in other fields of engineering, such as the
prediction of urban water demand [17].

A further singularity of dams is that the early years of operation often correspond to a
transient state, non-representative of the quasi-stationary response afterwards [18]. In such
a scenario, using those years for training a predictive model would be inadvisable. This
might lead to question the optimal size of the training set in achieving the best accuracy.
De Sortis [19] ran a sensitivity analysis and concluded that at least 10 years were needed
to obtain acceptable predictions. However, his study was limited to the prediction of the
radial displacement in one particular location of a specific dam by using HST. A similar
work was performed by Chouinard and Roy [2]. This paper seeks to extend such studies to
other learning algorithms and output variables.

2. Case study and variable selection

The data used for the study correspond to La Baells dam. It is a double curvature
arch dam, with a height of 102 m, which entered into service in 1976. The monitoring
system records the main indicators of the dam performance: displacement, temperature,
stress, strain and leakage. The data were provided by the Catalan Water Agency (Agència
Catalana de l’Aigua, ACA), the dam owner, for research purposes. Among the available
records, the study focuses on 14 variables: 10 correspond to displacements measured by
pendulums (five radial and five tangential), and four to leakage flow. Several variables of
different types were considered in order to obtain more reliable conclusions. Table 1 shows
some statistics of the target variables, whereas the location of each monitoring device is
depicted in Figure 1.

P1D-4

AFMD50PR

AFMI90PR
550 m.a.s.l.

590 m.a.s.l.

610 m.a.s.l.

AFTOTMD AFTOTMI

P5D-1P1D-1P6I-1

P2I-4

628 m.a.s.l.

Figure 1: Geometry and location of the monitoring devices in La Baells Dam. Left: view from downstream.
Right: highest cross-section.

The data acquisition frequency is of the order of one record per week. The measurement
error of the devices is ±0.1mm for displacements, and negligible for leakage flows (measured
using the volumetric method). The series span from 1979 to 2008. In all cases, approximately
40% of the records (from 1998 to 2008) were left out as the testing set. This is a large
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Target # Observations Type units Mean Min. Max.
P1DR1 1,194 Radial displ. mm -10.75 -20.6 2.1
P1DR4 1,194 Radial displ. mm -9.88 -16.8 0.0
P2IR4 1,191 Radial displ. mm -7.77 -17.5 1.3
P5DR1 1,193 Radial displ. mm -6.37 -14.8 1.9
P6IR1 1,198 Radial displ. mm -9.24 -17.5 0.1
P1DT1 1,194 Tangential displ. mm 2.36 0.0 3.9
P1DT4 1,194 Tangential displ. mm -0.32 -1.5 0.3
P2IT4 1,191 Tangential displ. mm -1.56 -2.7 -1.1
P5DT1 1,193 Tangential displ. mm -0.09 -1.8 1.6
P6IT1 1,199 Tangential displ. mm -2.04 -4.2 0.1

AFMD50PR 1,016 Leakage l/min 5.05 0.0 27.3
AFMI90PR 994 Leakage l/min 0.63 0.0 3.0
AFTOTMD 1,064 Leakage l/min 7.30 0.1 35.8
AFTOTMI 1,014 Leakage l/min 2.89 0.1 12.4

Table 1: Target variables considered in the comparative study

proportion compared with previous studies, which typically leave 10-20 % of the available
data for testing [14], [12], [16]. A larger test set was selected in order to increase the reliability
of the results.

Four different training sets were chosen to fit each model, spanning five, 10, 15 and 18
years of records. In all cases, the training data used correspond to the closest time period
to the test set (e.g. periods 1993-1997, 1988-1997, 1983-1997, and 1979-1997, respectively).

Other environmental variables are recorded at the dam site, and were considered as
inputs: air temperature, reservoir level and rainfall (Figure 2). Although the latter has no
influence on displacements, it has been included to test whether the methods analysed can
handle noisy or non-influential inputs without decreasing prediction accuracy.

Some derived variables were also calculated, namely:

• Average velocity of reservoir level variation in different periods prior to the measure-
ment (10, 20 and 30 days).

• Accumulated rainfall over various periods (30, 60, 90 and 180 days) prior to the reading.

• Moving averages of reservoir level and air temperature over seven, 14, 30, 60, 90 and
180 days before the record.

Finally, the year, number of days from the first record, and month were also considered as
explanatory variables up to 25.

The variable selection was performed according to dam engineering practice. Both dis-
placements and leakage are strongly dependant on hydrostatic load. Air temperature is well
known to affect displacements, in the form of a delayed action. It is not clear whether it
strongly influences leakage or not. Whereas Seifart et al. [20] reported that leakage in the
Itaipú Dam follows a seasonal cycle “due clearly to the thermal effect on the opening and
closure of joints”, other studies showed no dependency [3]. Both the air temperature and
some moving averages were included in the analysis.
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Figure 2: Time series of environmental variables at La Baells dam site. From top to bottom: water level,
air temperature and daily rainfall. The vertical dashed line marks the division between training and test
periods.

Hydrostatic load induces an almost immediate response of the dam, although some studies
suggest that there may be also a delayed effect, specially for leakage [11], [21]. Moving
averages of reservoir level were considered to capture it. The velocity of variation of reservoir
level over different periods was also included, following studies that suggest the existence of
an influence in dam displacements [22].

In order to account for the temporal drift of the structure, both the year and the number
of days from the first record were also added.

A relatively large set of predictors was used to capture every potential effect, overlook-
ing the high correlation among some of them. In addition, the comparison sought to be
as unbiased as possible, thus all the models were built using the same inputs3. While it

3with the exceptions of MARS and HST, as explained in sections 3.5 and 3.6 respectively
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is acknowledged that this procedure may favour the techniques that better handle noisy
or scarcely important variables, theoretically all learning algorithms should discard them
automatically during the model fitting.

3. Methods

In this section, the algorithms chosen to build the prediction models are briefly described.
Although the detailed mathematical description is beyond the scope of the paper, a short
description, the most relevant features, and some key references are included. All the models
were built by using the language/programming environment R [23] and some of its packages,
which are cited in each section.

The objective is to predict an output variable Y ∈ R based on the value of a set of
predictors X ∈ Rp, i.e. Y ≈ Ŷ = F (X). The observed values are denoted as (xi, yi), i =
1, ..., N , where N is the number of observations. Note that each xi is a vector with p
components, each of which is referred to as xji , when necessary. Similarly, Xj, j = 1, ..., p
stands for each dimension of the input space.

3.1. Random forests (RF)

An RF model is a group of regression (or classification) trees [24], trained on altered
versions of the training set. Given that its output is the average of the prediction of each
individual tree, it is an ensemble method. Since RF were first introduced by Breiman [25],
they have become highly popular as a method to build predictive models [26]. The training
process has two random components:

• Only a random subset of the input variables is considered to perform each division of
the input space.

• Each tree is built using a different training set, obtained from the original data via
random sampling with replacement.

The aim of adding randomness is to generate substantially different trees, so that the en-
semble captures as many patterns in the training set as possible. Other interesting features
of RF are the following:

• They can easily handle continuous, discrete and categorical inputs, as well as missing
values.

• They can naturally model non-linear interactions.

• They avoid the need to perform cross-validation, because an unbiased estimate of the
generalisation error is computed during the training process (out-of-bag (OOB) error).

Two parameters can be tuned for building an RF model: the number of covariates to consider
at each split (mtry), and the total number of trees in the forest. Neither has significant
influence on the results, according to the majority of published authors (e.g. [25], [26]).

The default value of mtry for regression is p/3, with p being the number of covariates.
An RF model was fitted with the default mtry, and then it was increased and decreased to
find the value that gives the minimum OOB error. The function tuneRF of the R package
“randomForest” [27] was used.

All RF models entailed 500 trees, with it being checked that the OOB error is stable
with that size.
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3.2. Boosted regression trees (BRT)

Boosting is a general scheme to build ensemble prediction models [28]. Although various
methods can be selected to form the ensemble, regression trees are frequently chosen, and
were used in this work.

The idea is to build an ensemble so that each single model (often referred to as base learn-
ers), is fitted to the residual of the previous ensemble. The overall prediction is calculated
as the weighted sum of the outputs of the base learners (unlike RF, where the prediction of
the ensemble is the average).

The algorithm includes two ingredients to avoid over-fitting:

• Each learner is trained on a random subset (without replacement) of the training set.
This also decreases the computational cost.

• A regularisation (shrinkage) parameter ν ∈ (0, 1) is applied.

Some empirical analyses show that relatively low values of ν (below 0.1) greatly improve
generalisation capability [28]. The optimal value depends on the number of base learners.
In practice, it is common to set the regularisation parameter and calculate a number of trees
such that the training error stabilises [29]. Subsequently, a certain number of terms are
“pruned” by using for example cross-validation. The library used [29] allows choice of the
number of trees by different methods. The value ν = 0.001 was considered and the number of
trees was selected by means of five-fold cross-validation. The process was repeated by using
trees of depth 1 and 2 (interaction.depth), and the most accurate for each target selected.

3.3. Neural networks (NN)

NN models have been applied to solve a wide variety of problems. Among the different
types of NN found in the literature [13], the multilayer perceptron (MLP) was selected for
this work. An MLP is formed by a number of single units, called perceptrons, organised
in different layers. The simplest architecture of an MLP was used, which involves three
layers: input, hidden and output. Each perceptron in the hidden layer applies a nonlinear
transformation to the inputs, and yields a response, which is later combined to compute the
model output. Thus, NN are appropriate to model non-linear input-output relations.

NN stand out as one of the most popular machine learning techniques for civil engineers.
Some previous applications to dam monitoring have been mentioned in section 1.2.

The package “nnet” [30] was used, which allows tuning the NN models by setting several
parameters. The size (number of perceptrons in the hidden layer) and the decay (regularisa-
tion parameter) are the most influential in the results [31]. All the possible combinations of
three, 12 and 25 perceptrons (size) with decay of 0.1, 0.01 and 0.001 were tried, and the pair
of values which showed the minimum error via five-fold cross-validation was chosen. For each
fold, 15 NN with different initialisations were fitted, and the average error was compared.
Thus, the accuracy of every combination of parameters was computed on the basis of 75 NN.

The selected parameters were applied to train 20 NN models over the whole training
set with the function avNNet, from the R package “caret” [32]. The final prediction was
computed as the average of the 20 NN.
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3.4. Support vector machines (SVM)

This learning algorithm is based on a non-linear transformation of the predictor variables
to a higher dimensional space (often referred to as feature space), and a linear regression on
these transformed variables. The mathematical development of the method is complex and
beyond the scope of the paper. Detailed and rigorous descriptions can be found in [33] and
[34], and a recent application in predicting dam behaviour is reported in [35]. The method
uses an ε-insensitive error function that neglects errors below the threshold ε. The algorithm
searches for a trade-off between the minimum error and the smoothness of the approximating
function. The library “e1071” within the R environment [36] was used, which allows tuning
the most important parameters [37] of an SVM model:

• The “cost” parameter, C. Values of 10, 100 and 500 were tested.

• The width of the ε-insensitive error function, ε. The default value (0.1) was chosen.

• The kernel function, which defines the mapping from the input to the feature space.
A radial basis function was considered: K (xi, X) = e−γ|xi−X|

2

• The γ parameter of the kernel. Values of 1, 0.1, 0.01, 0.001 and 0.0001 were tried.

The 15 possible combinations of C and γ were applied to fit SVM models on the training
data. Four-fold cross-validation was performed to obtain the best values. Each fold and
combination of parameters was repeated five times to account for randomness, and the one
with the lowest average error was selected to train an SVM model over the whole training
set.

3.5. Multivariate adaptive regression splines (MARS)

MARS is an adaptive algorithm originally proposed by Friedman [38]. It is based on the
combination of elementary piecewise linear functions, which definition depends on the data.
As an example, an input data xjj = k defines a pair of basic functions of the form (Xj − k)+
and (k − Xj)+. The subscript “+” stands for the positive part, i.e.: (Xj − k)+ = Xj − k
if Xj > k ; 0, otherwise [31]. The algorithm starts with a constant value and adds pairs
of functions as long as the training error decreases above a given threshold. This is the
forward pass. At the end of this step, the resulting model typically over-fits the data. Then
a “pruning” process is followed, during which some of the functions are eliminated according
to the generalised cross validation (GCV) criterion. GCV is a modification of the residual
sum of squares (RSS) which takes into account the number of parameters of the model [31].
In practice, the method searches for a trade-off between the reduction in the training error
and the complexity of the model.

MARS models are well suited to non-linear problems, as well as easily interpretable.
Furthermore, the algorithm implicitly performs variable selection, given that the functions
in the final ensemble depend only on the most relevant predictors Xj.

The work was performed using the library “earth” [39], and the parameter tuned was the
maximum number of terms in the final model (nprune). Five-fold cross-validation was run,
repeated five times (nfold = 5 and ncross = 5 in the earth function). In principle, the model
with the highest coefficient of determination (RSq) should be selected. However, the results
of some preliminary tests showed that in most cases the RSq rose sharply after adding the first
few terms, and remained almost constant afterwards. For the sake of model simplicity and
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generalisation capability, the lower value of nprune with RSq ≥ mean(RSq) − SD(RSq)
was selected, a criterion similar to the 1 SE rule proposed by Breiman et al. [40]. The
same tests also revealed that the models with one or more time-dependant functions in the
final ensemble (i.e. considering the year and/or the day since the first record) had poor
generalisation ability. Therefore, both inputs were removed from the set of predictors.

3.6. HST

A conventional HST model was also built, in order to compare the results with current
engineering practice. The most typical form was chosen:

Ŷ = F (t, h, s) = a0 + a1h+ a2h
2 + a3h

3 + a4h
4 + a5h

5

+a5e
−t + a6t+ a7cos(s) + a8sen(s)

+a9sen
2(s) + a10sen(s)cos(s)

s =
d

365, 25
2π

where d is the number of days since 1 January, t is the elapsed time (years), h is the reservoir
level, and a1, a2, ..., a10 are the coefficients to fit.

3.7. Measures of accuracy

The accuracy of regression models is frequently measured via the mean absolute error
(MAE), computed as:

MAE =

∑N
i=1 |yi − F (xi)|

N

where N is the size of the training (or test) set, yi are the observed outputs and F (xi) the
predicted values. Given that MAE is measured in the same units as the target variable, it
provides a useful indication of prediction accuracy. However, it takes into account neither
the mean value of the output, nor its deviation. Moreover, it is not appropriate to compare
results correspondent to outputs of a different nature (e.g. displacements vs flows). To
overcome these drawbacks, the study is mostly based on the average relative variance (ARV)
[41]:

ARV =

∑N
i=1(yi − F (xi))

2

∑N
i=1(yi − ȳ)2

=
MSE

σ2

where ȳ is the output mean. Given that ARV denotes the ratio between the mean squared
error (MSE) and the variance (σ2), it accounts both for the magnitude and the deviation of
the target variable. Furthermore, a model with ARV=1 is as accurate a prediction as the
mean of the observed outputs.

4. Results and discussion

Models for 14 targets, with six learning algorithms, trained over four different training
sets were fitted, i.e. 14 × 6 × 4 = 336 models. Due to space constraints, only one plot is
presented in Figure 3 as an example. It shows the predictions of the BRT model trained over
the whole training set, in comparison with the measured data for three targets of different
kind (P1DR1, P1DT1 and AFMD50PR). It provides an intuition on the goodness of fit
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achieved, and highlights how the ARV allows comparison of the accuracy between different
targets. Although the highest MAE corresponds to P1DR1, it yields the lowest ARV at the
same time, because of its higher variance.
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Figure 3: Measured data (circles) versus predictions of the BRT model (lines) for the test period. The
residuals between them are included below each plot. From top to bottom: P1DR1, P1DT1 and AFMD50PR.

It is commonly accepted that increasing the amount of training data leads to a better
model performance. Although this may not be the case of dams, in general the statistical
models for dam monitoring are fitted using all the available data. Table 2 shows the MAE
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Type Target RF BRT NN SVM MARS HST

Radial (mm)

P1DR1 1.70 0.93 0.58 0.75 2.32 1.35
P1DR4 1.05 0.71 0.68 0.76 1.50 1.37
P2IR4 0.94 0.97 1.02 1.05 0.85 1.12
P5DR1 0.86 0.70 0.64 1.35 0.89 0.88
P6IR1 1.47 0.69 0.72 0.60 1.67 0.91

Tangential (mm)

P1DT1 0.24 0.25 0.52 0.35 0.55 0.47
P1DT4 0.15 0.15 0.18 0.19 0.22 0.20
P2IT4 0.13 0.11 0.13 0.12 0.14 0.10
P5DT1 0.40 0.22 0.19 0.38 0.47 0.18
P6IT1 0.28 0.27 0.39 0.94 0.39 0.51

Leakage (l/min)

AFMD50PR 1.24 0.90 2.11 4.25 1.74 2.24
AFMI90PR 0.18 0.15 0.07 0.33 0.25 0.28
AFTOTMD 1.82 1.60 3.04 5.38 1.85 2.60
AFTOTMI 0.91 0.42 0.83 1.49 1.49 1.11

Table 2: MAE for each output and model, fitted on the whole training set (18 years). The values within
10% from the minimum are highlighted in bold, and the minimum MAE are also underlined. The results
correspond to the test set.

for each target and model, fitted on the whole training set, i.e., 18 years.
It can be seen that models based on ML techniques mostly outperform the reference

HST method. NN models yield the highest accuracy for radial displacements, whereas BRT
models are better on average both for tangential displacements and leakage flow. It should
be noted that the MAE for some tangential displacements is close to the measurement error
of the device (±0.1mm).

Figure 4 shows the results in terms of ARV for each model and type of output. It should
be remembered that models with ARV > 1 can be considered as being of little use. The error
is lower for radial displacements, whereas there is not a great difference between the ARV for
leakage flow and tangential displacements. These results are in accordance with engineering
knowledge: the prediction of tangential displacements is more difficult because the signal-to-
noise ratio is lower than for radial displacements (while the measurement error is the same,
the standard deviations are highly different, as shown in Table 1). The measurement error
for leakage flow is negligible, but it is governed by a more complex physical process, which
makes it harder to predict.

The study was repeated with each technique, using different training set sizes, namely
five, 10 and 15 years. The results were compared to those obtained previously, with 18 years.
The test set was the same as before (1998-2008). Figure 5 shows the results. An important
decrease in error is observed in most cases between models trained on five and 10 years.
This decrease is dramatic for HST (note that some of the results for HST and five years lie
outside the vertical limit of the plots).

Although some previous studies offered similar results [19], in this case such effect may
be more pronounced due to the fact that the reservoir level remained high in the 1993-1998
period (Fig. 2). Models fitted on those years have no information on the dam behaviour
when the reservoir is at low levels, and therefore the prediction of the dam response in such
situations may be highly inaccurate.
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Figure 4: ARV for each target and model, fitted on the whole training set (18 years). Models with ARV > 1.0
are less accurate than the sample mean. The average values for each technique and type of output are plotted
with black dots. Note the logarithmic scale of the vertical axis. The results correspond to the test set.

When increasing the training set up to 15 and 18 years, the variation is either negligible
(i.e. BRT models for leakage, Figure 5, bottom), or there is a small decrease in error (i.e.
NN models for radial displacements, Figure 5, top). In some cases, the error even increases,
such as in HST models for radial displacements (Figure 5, top). Some techniques do not
show a clear trend, such as MARS models for tangential displacements (Figure 5, bottom).

Table 3 compares the best models overall with those trained on the entire training set
(18 years). Although the use of the whole training set is optimal for six out of 14 targets,

Target Best model MAE Best model MAE Best training MAE
18 years 18 years overall overall size (years) reduction (%)

P1DR1 NN 0.58 - - - -
P1DR4 NN 0.68 MARS 0.60 5 13.3
P2IR4 MARS 0.85 MARS 0.81 15 4.7
P5DR1 NN 0.64 - - - -
P6IR1 SVM 0.60 SVM 0.53 10 11.7
P1DT1 RF 0.24 BRT 0.22 10 8.3
P1DT4 RF/BRT 0.15 BRT 0.14 10 6.7
P2IT4 HST 0.10 - - - -
P5DT1 HST 0.18 - - - -
P6IT1 BRT 0.27 MARS 0.23 5 14.8
AFMD50PR BRT 0.90 BRT 0.89 15 1.1
AFMI90PR NN 0.07 - - - -
AFTOTMD BRT 1.60 BRT 1.57 15 1.9
AFTOTMI BRT 0.42 - - - -

Table 3: Comparison between the best models fitted using the whole training set and the best overall. Empty
rows correspond to outputs for which no improvement is achieved by using a smaller training set. The results
correspond to the test set.

significant improvements are reported in some cases by eliminating some of the early years.
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Figure 5: ARV for each model and training set size. Top: radial displacements. Middle: tangential displace-
ments. Bottom: leakage flow. Some HST models trained over 5 years are out of the range of the vertical
axis, thus highly inaccurate. The results correspond to the test set.

Surprisingly, for two of the outputs, the lower MAE corresponds to a model trained over five
years, which in principle was assumed to be too small a training set. MARS is especially
sensitive to the size of the training data. The MARS models trained on five years improve
the accuracy for P1DR4 and P6IT1 by 13.3 % and 14.8 % respectively.

These results strongly suggest that it is advisable to select carefully the most appropriate
training set size. This should be done by leaving an independent validation set.
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5. Summary and conclusions

It was found that the accuracy of currently applied methods for predicting dam behaviour
can be substantially improved by using ML techniques.

The sensitivity analysis to the training set size shows that removing the early years of
dam life cycle can be beneficial. In this work, it has resulted in a decrease in MAE in some
cases (up to 14.8%). Hence, the size of the training set should be considered as an extra
parameter to be optimised during training.

Some of the techniques analysed (MARS, SVM, NN) are more susceptible to further tun-
ing than others (RF, BRT), given that they have more hyper-parameters. As a consequence,
the former might have a larger margin for improvement than the latter.

A more careful selection of variables could also improve the fit. It should be noted,
though, that variable selection is an issue in itself, and will be the subject of further work.
It may not only decrease the error, but also help to build more understandable models.

However, both detailed tuning and careful variable selection increase the computational
cost and complicate the analysis. If the objective is the extension of these techniques for the
prediction of a large number of variables of many dams, the simplicity of implementation is
an aspect to be considered in model selection.

In this sense, BRT showed to be the best choice: it was the most accurate for five of the 14
targets; easy to implement; robust with respect to the training set size; able to consider any
kind of input (numeric, categorical or discrete), and not sensitive to noisy and low relevant
predictors.

However, none of the algorithms provides the highest accuracy in all cases. Therefore, if
the main objective is to achieve the best possible fit, the analysis should not be limited to a
single technique.
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Abstract

Predictive models are essential in dam safety assessment. They have been traditionally
based on simple statistical tools such as the hydrostatic-season-time (HST) model. These
tools are well known to have limitations in terms of accuracy and reliability. In the recent
years, the examples of application of machine learning and related techniques are becoming
more frequent as an alternative to HST. While they proved to feature higher flexibility
and prediction accuracy, they are also more difficult to interpret. As a consequence, the vast
majority of the research is limited to prediction accuracy estimation. In this work, one of the
most popular machine learning techniques (boosted regression trees), was applied to model
8 radial displacements and 4 leakage flows at La Baells Dam. The possibilities of model
interpretation were explored: the relative influence of each predictor was computed, and the
partial dependence plots were obtained. Both results were analysed to draw conclusions on
dam response to environmental variables, and its evolution over time. The results show that
this technique can efficiently identify dam performance changes with higher flexibility and
reliability than simple regression models.

Keywords:
machine learning, dam safety, dam monitoring, boosted regression trees

1. Introduction

Dam monitoring is essential to ensure its proper operation and its long-term safety [1].
One of the main tasks to be carried out is the comparison between the expected response and
that registered by the monitoring system, to understand the dam behaviour and to detect
potential anomalies. In this context, predictive models are necessary to estimate the dam
response in a given situation.

Data-based tools allow building predictive models based on monitoring data, i.e., with-
out explicitly considering the physical properties of the dam and the foundation. The
hydrostatic-season-time (HST) model [2] is the most widely applied, and the only gener-
ally accepted by practitioners.

∗Corresponding author: F. Salazar
Email addresses: fsalazar@cimne.upc.edu (Fernando Salazar ), matoledo@caminos.upm.es (Miguel
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1International Center for Numerical Methods in Engineering (CIMNE). Campus Norte UPC. Gran

Capitán s/n. 08034. Barcelona, Spain
2Technical University of Madrid (UPM). Civil Engineering Department: Hydraulics, Energy and Envi-

ronment. Profesor Aranguren s/n, 28040, Madrid, Spain

Preprint submitted to Engineering Structures December 21, 2016



HST is based on multiple linear regression considering the three most influential external
variables: hydrostatic load, air temperature and time. The main advantages of HST are:

1. It frequently provides useful estimations of displacements in concrete dams [3].

2. It is simple and thus easily interpretable: the effect of each external variable can be
isolated in a straightforward manner, since they are cumulative.

3. Since the thermal effect is considered as a periodic function, the time series of air
temperature are not required. This widens the possibilities of application, as only the
reservoir level variation is needs to be available to build an HST model.

4. It is well known by practitioners and frequently applied in several countries [3].

Nonetheless, HST also features conceptual limitations that damage the prediction accu-
racy [3] and may lead to misinterpretation of the results [4]. For example, it is based on
the assumption that the hydrostatic load and the temperature are independent, whereas it
is obviously not the case: the thermal field in the dam body, especially in the vicinity of the
water surface, is strongly dependant on the water temperature in the upstream face [5]. In
turn, the thermal load influences the stress and displacement fields.

Several modifications to the original HST model have been proposed to overcome these
drawbacks. They focus on improving the consideration of the thermal load, by taking into
account the actual air temperature instead of the historical mean [6], or the effect of the
water temperature on the upstream face [3], [7].

In the recent years, non-parametric techniques have emerged as an alternative to HST
for building data-based behaviour models [8], e.g. support vector machines (SVN) [9], neu-
ral networks (NN) [10], adaptive neuro-fuzzy systems (ANFIS) [11], among others [8]. In
general, these tools are more suitable to model non-linear cause-effect relations, as well as
interaction among external variables, as that previously mentioned between hydrostatic load
and temperature. On the contrary, they are typically more difficult to interpret, what led
them to be termed as “black box” models (e.g. [12]).

Most of the published works focused on building predictive models whose accuracy was
generally higher than that offered by HST (e.g. [10], [13], [14]). Since the resulting model was
seldom analysed, little information was provided for dam safety assessment. Some exceptions
worth mentioning, though simple, were due to Santillán et al. [15], Mata [10] and Cheng
and Zheng [16].

Therefore, dam engineers face a dilemma: the HST model is widely known and used and
easily interpretable. However, it is based on some incorrect assumptions, and its accuracy
can be increased. On the other hand, more flexible and accurate models are available, but
they are more difficult to implement and analyse. The same problem arose in the field of
statistics [17].

The objective of this work is to investigate the possibilities of interpretation of one of
these black box models to:

1. Identify the effect of each external variable on the dam behaviour

2. Detect the temporal evolution of the dam response

3. Provide meaningful information to draw conclusions about dam safety

Among the plethora of machine learning techniques available [18], a previous comparative
study [13] showed boosted regression trees (BRT) as one of the more appropriate tools for
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the prediction of dam response. In this paper, the technique was further explored, with
focus on the interpretation of the results for dam behaviour identification. In particular,
the partial dependence plots were examined to isolate the effect of each action, and the
relative influence (RI) was computed to identify the strength of each input-output relation.
Furthermore, the results were interpreted from an overall viewpoint to draw conclusions on
the dam behaviour.

The method was applied to the analysis of La Baells Dam, as compared to the conven-
tional HST model.

The rest of the paper is organised as follows. A brief introduction to BRT is presented,
including the methods for interpretation. Then, the case study and the HST version taken
as reference are described. The results are included and interpreted in terms of the dam
behaviour, and the differences between both methods are discussed.

2. Methods

2.1. Boosted regression trees
The objective of a predictive model is to estimate the value of an output variable Y ∈

R (i.e. radial displacement or leakage), based on a set of predictors (reservoir level, air
temperature, etc.) X ∈ Rp, i.e. Y ≈ Ŷ = F (X). The observed values are denoted
as (xi, yi), i = 1, ..., N , where N is the number of observations. Note that each xi is a
vector with p components, each of which is referred to as xji , when necessary. Similarly,
Xj, j = 1, ..., p stands for each dimension of the input space.

BRT models are built by combining two algorithms: a set of single models are fitted by
means of decision trees [19], and their output is combined to compute the overall prediction
using boosting [20]. For the sake of completeness, a short description of both techniques
follow, although excellent introductions can be found in [21], [22], [23], [12].

2.1.1. Regression trees

Regression trees were first proposed as statistical models by Breiman et al. [19]. They
are based on the recursive division of the training data in groups of “similar” cases. The
output of a regression tree is the mean of the output variable for the observations within
each group.

When more than one predictor is considered (as usual), the best split point for each is
computed, and the one which results in greater error reduction is selected. As a consequence,
non-relevant predictors are automatically discarded by the algorithm, as the error reduction
for a split in a low relevant predictor will generally be lower than that in an informative one.

Other interesting properties of regression trees are:

• They are robust against outliers.

• They require little data pre-processing.

• They can handle numerical and categorical predictors.

• They are appropriate to model non-lineal relations, as well as interaction among pre-
dictors.

By contrast, regression trees are unstable, i. e., small variations in the training data lead
to notably different results. Also, they are not appropriate for certain input-output relations,
such as a straight 45o line [23].
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2.1.2. Boosting

Boosting is a general scheme to build ensemble prediction models [20]. It is based on
the generation of a (frequently high) number of simple models (also referred to as “weak
learners”) on altered versions of the training data. The overall prediction is computed as a
weighted sum of the output of each model in the ensemble. The rationale behind the method
is that the average of the prediction of many simple learners can outperform that from a
complex one [24].

The idea is to fit each learner to the residual of the previous ensemble. The main steps
of the original boosting algorithm when using regression trees and the squared-error loss
function can be summarised as follows [25]:

1. Start predicting with the average of the observations (constant):

F0 (X) = f0 (X) = ȳi

2. For m = 1 to M

(a) Compute the prediction error on the training set:

ỹi = yi − Fm−1 (xi)

(b) Draw a random sub-sample of the training set (Sm)
(c) Consider Sm and fit a new regression tree to the residuals of the previous ensemble:

ỹi ≈ fm (X) , i ∈ Sm

(d) Update the ensemble:

Fm(X)⇐ Fm−1(X) + fm(X)

3. FM is the final model

It is generally accepted that this procedure is prone to over-fitting, because the training
error decreases with each iteration [25]. To overcome this problem, it is convenient to add a
regularization parameter ν ∈ (0, 1), so that step (d) turns into:

Fm(X)⇐ Fm−1(X) + ν · fm(X)

Some empirical analyses showed that relatively low values of ν (below 0.1) greatly improve
generalisation capability [20]. In practice, it is common to set the regularisation parameter
and consider a number of trees such that the training error stabilises [21]. Subsequently, a
certain number of terms are pruned using for example cross-validation. This is the approach
employed in this work, with ν = 0.001 and a maximum of 10,000 trees. It was verified that
the training error reached the minimum before adding the maximum number of trees.

Five-fold cross-validation was applied to determine the amount of trees in the final en-
semble. The process was repeated using trees of depth 1 and 2 (interaction.depth), and the
most accurate for each target was selected. The rest of the parameters were set to their
default values [26].

All the calculations were performed in the R environment [27].
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2.2. Model interpretation

2.2.1. Relative influence (RI)

BRT models are robust against the presence of uninformative predictors, as they are
discarded during the selection of the best split. Moreover, it seems reasonable to think that
the most relevant predictors are more frequently selected during training. In other words,
the relative influence (RI) of each input is proportional to the frequency with which they
appear in the ensemble. Friedman [20] proposed a formulation to compute a measure of RI
for BRT models based on this intuition. Both the relative presence and the error reduction
achieved are considered in the computation. The results are normalised so that they add up
to 100.

Based on this measurement, the most influential variables were identified for each output,
and the results were interpreted in relation to dam behaviour. In order to facilitate the
analysis, the RI was plotted as word clouds [28]. These plots resemble histograms, with
the advantage of being more appropriate to visualise a greater set of variables. The code
representing each predictor was displayed with a font size proportional to its relative influence
with the library “wordcloud” [29].

Furthermore, two degrees of variable selection were applied, based on the RI of each
predictor. First, a BRT model (M1) was trained with all the variables considered (section
2.4). Second, the inputs with RI (Xj) > min (RI (Xj)) + sd (RI (Xj)) were selected to
build a new model (M2). This criteria is heuristic and based on the 1-SE rule proposed by
Breiman et al. [19]. Finally, a model with three predictors was generated (M3), featuring
the more relevant variables of each group: temperature, time and reservoir level for radial
displacements, and rainfall, time and level for leakage flows.

These three versions were generated to analyse the effect of the presence of uninformative
variables in the predictor set. Moreover, the simplest model facilitates the analysis, as the
effect of each action is concentrated in one single predictor.

In this sense, the temporal evolution is particularly relevant for dam safety evaluation,
as it can help to identify a progressive deterioration of the dam or the foundation, which
might result in a serious fault if not corrected.

2.2.2. Partial dependence plots

Multi-linear regression models and HST in particular are based on the assumption that
the input variables are statistically independent, so the prediction is computed as the sum
of their contributions. As a result, the effect of each predictor in the response can be easily
identified, by plotting f(Xj),∀j = 1...p.

This method is not appropriate for BRT models, as interactions among predictors are
accounted for. While this results in more flexibility, it also implies that the identification of
the relation between predictors and response is not straightforward.

Nonetheless, it is possible to examine the predictor-response relationship by means of
the partial dependence plots [20]. This tool can be applied to any black box model, as it is
based on the marginal effect of each predictor on the output, as learned by the model. Let
Xj be the variable of interest. A set of equally spaced values are defined along its range:
Xj = xjk. For each of those values, the average of the model predictions is computed:

F̄
(
xjk
)

=
1

N

N∑

i=1

F
(
xjk, x

jc
i

)
(1)
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where xjci is the value for all inputs other than Xj for the observation i.
Similar plots can be obtained for interactions among inputs: the average prediction is

computed for couples of fixed xjk, where j takes two different values. Hence, the results can
be plotted as a three-dimensional surface (section 3.3). In this work, partial dependence
plots were restricted to the simplest model, which considered three predictors. Therefore,
three 3D plots allowed investigating the pairwise interactions for all the inputs considered
in the simplified model.

2.3. HST model

A conventional HST model was fitted for comparison purposes:

Ŷ = F (t, h, s) = a0 + a1h+ a2h
2 + a3h

3 (2)

+a4h
4 + a5h

5 + a6e
−t

+a7t+ a8cos(s) + a9sin(s)

+a10sin
2(s) + a11sin(s)cos(s)

where

s =
d

365, 25
2π (3)

where d is the number of days since 1 January, t is the elapsed time (years), h is the reservoir
level, and a1, a2, ..., a11 are the coefficients to fit.

The contribution of each action can be computed by adding the correspondent terms:

Ŷh = a1h+ a2h
2 + a3h

3 + a4h
4 + a5h

5 (4)

Ŷs = a8cos(s) + a9sin(s) (5)

+a10sin
2(s) + a11sin(s)cos(s)

Ŷt = a5e
−t + a6t (6)

This model was also employed to check the reliability of the temporal behaviour identified
by BRT models for some devices. After an HST model was fitted to the training data, a
modified version of the time series of the target variable was generated by removing the
temporal term (Ŷt) and adding random noise of zero mean and a standard deviation equal
to 0.5 (mm for displacements; l/min for leakage):

Ymod = Ŷh + Ŷs +N(0, 0.5) (7)

The result is a time series whose dependence from the temperature and the level approx-
imates that of the actual displacement, while being totally time-independent.

2.4. Case study

The data used for the study correspond to La Baells Dam. It is a double curvature
arch dam, with a height of 102 m, which entered into service in 1976. Among the available
records, the study focused on 12 variables: 8 corresponded to radial displacements measured
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Figure 1: Geometry and location of the monitoring devices in La Baells Dam. Left: view from downstream.
Right: highest cross-section.
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Figure 2: Time series of the reservoir level at La Baells Dam.

by pendulums (along the upstream-downstream direction), and four to leakage flow. The
location of each monitoring device is depicted in Figure 1.

As for the environmental variables, the mean daily air temperature, the reservoir level
and the daily rainfall were available. Figure 2 depicts the reservoir level variation in the
period considered, whereas the other two are included in the Appendix (Figures A1 and
A2).

Since BRT models automatically discard those predictors not associated with the output
[30], the initial model considered a relatively large set of inputs. The objective was to test
that property (by introducing obviously unimportant predictors), as well as to explore the
rate of influence of several variables whose relevance was not so obvious (e. g. the rate of
variation of the reservoir level). The complete list of predictors is included in table 1.

All the calculations were performed on a training set covering the period 1980-1997,
when weekly records were available. The relative influence and the partial dependence were
computed with this data set. The model accuracy was assessed for a validation set covering
the period 1998-2008.

The goodness of fit was computed in terms of the mean absolute error (MAE):

MAE =

∑N
i=1 |yi − F (xi)|

N
(8)

where N is the size of the training (or validation) set, yi are the observed outputs and
F (xi) the predicted values. As MAE is measured in the same units as the variable to predict,
it is an intuitive measure of accuracy. However, it is not appropriate to compare models for
different targets, as it does not account for the standard deviation of the output.

To overcome this limitation, the average relative variance (ARV) [31] was also computed:
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Table 1: Predictor variables considered for the initial BRT model (M1).

Code Group Type
Period
(days)

Level Hydrostatic load Original -
Lev007

Hydrostatic load Moving average

7
Lev014 14
Lev030 30
Lev060 60
Lev090 90
Lev180 180
Tair

Air temperature Moving average

1
Tair007 7
Tair014 14
Tair030 30
Tair060 60
Tair090 90
Tair180 180
Rain

Rainfall Accumulated

1
Rain030 30
Rain060 60
Rain090 90
Rain180 180
NDay

Time Original
-

Year -
Month Season Original -
n010

Hydrostatic load Rate of variation
10

n020 20
n030 30
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ARV =

∑N
i=1(yi − F (xi))

2

∑N
i=1(yi − ȳ)2

=
MSE

σ2
(9)

where ȳ is the output mean. Given that ARV denotes the ratio between the mean squared
error (MSE) and the variance (σ2), it accounts both for the magnitude and the deviation of
the target variable.

2.5. Overall procedure

For each target, the complete process comprised the following steps:

1. Fit a BRT model on the training data with the variables in table 1 (M1).

2. Compute the RI and generate the word cloud.

3. Select the most relevant predictors with the 1-SE rule (see section 2.2.1) and fit a new
BRT model (M2).

4. Build a simple BRT model (M3) with the most influential variable of each group
(temperature, level and time for displacements, and rainfall, level and time for leakage).

5. Generate the univariate and bivariate partial dependence plots for the simplest model.

6. Compute the goodness of fit for each model in both the training and the validation
sets.

3. Results and discussion

3.1. Model accuracy

Although the work focused on model interpretation and its implications on dam safety,
the goodness of fit was also checked in order to a) observe the effect of variable selection,
and b) check the prediction accuracy of the model used for interpretation (M3).

Table 2 contains the error indices for each target, while more detailed results are included
in the Appendix. For those models with variable selection, the predictors are also listed.
The results show that BRT efficiently discarded irrelevant inputs, since the fitting accuracy
was similar for each version in most cases (i.e., the presence of uninformative predictors did
not damage the fitting accuracy).

The residuals were higher for the validation period, what reveals some degree of over-
fitting. A probable reason is that time was considered as any other predictor, and thus
extrapolation over time was required to calculate the response in a more recent period. It
is well known that non-parametric models lose much of their accuracy when predictions are
made outside the range of variation of the input variables [32]. The increase in prediction
error is greater for those targets for which time influence is more important, as is the case
of the leakage in the left margin (up to four times larger). In these cases (AFMI90PR and
AFTOTMI), the usefulness of the ARV is clearly observed: while the MAE is similar for the
training and validation periods, the ARV is notably greater in the latter case, because the
variance is lower in the most recent period (leakage flow decreased significantly over time).
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Table 2: Accuracy of each model and target for the training and validation sets. The results and inputs
considered by the most accurate version are highlighted in bold.

Train Validation
Target MAE ARV MAE ARV Inputs

P1DR1
0,64 0,03 0,91 0,08 All
0,68 0,03 0,81 0,06 Tair090,Level,NDay,Lev007,Lev014
0,69 0,03 0,78 0,06 NDay,Tair090,Level

P1DR4
0,46 0,03 0,65 0,08 All
0,50 0,03 0,66 0,08 Level,Tair090,NDay,Lev007,Lev014,Lev030
0,51 0,03 0,67 0,08 NDay,Tair090,Level

P2IR1
0,66 0,03 1,03 0,09 All
0,85 0,05 1,09 0,09 Tair090,Level,Lev007,Lev014
0,71 0,04 0,98 0,08 NDay,Tair090,Level

P2IR4
0,48 0,05 0,90 0,14 All
0,61 0,06 0,93 0,14 Level,Tair090,Lev007,Lev014,Lev030
0,53 0,06 0,94 0,16 NDay,Tair090,Level

P5DR1
0,66 0,05 0,82 0,08 All
0,64 0,05 0,87 0,10 Tair060,Level,Tair030
0,83 0,08 0,93 0,11 NDay,Tair060,Level

P5DR3
0,25 0,03 0,47 0,21 All
0,33 0,05 0,55 0,22 Tair060,Level,Tair030
0,31 0,04 0,52 0,24 NDay,Tair060,Level

P6IR1
0,60 0,04 0,80 0,09 All
0,65 0,05 0,78 0,08 Tair060,Tair030,Level,NDay
0,83 0,08 0,85 0,1 NDay,Tair060,Level

P6IR3
0,23 0,02 0,40 0,08 All
0,37 0,05 0,67 0,17 Tair060,Level,Tair030
0,29 0,03 0,43 0,09 NDay,Tair060,Level

AFMD50PR
1,28 0,16 0,93 0,19 All
1,45 0,17 1,36 0,28 Level,Lev014,Lev007
1,16 0,14 1,23 0,48 NDay,Rain090,Level

AFMI90PR
0,08 0,09 0,15 0,51 All
0,08 0,10 0,12 0,45 Lev007,NDay,Level,Lev014,Lev030
0,08 0,10 0,12 0,46 NDay,Rain030,Lev007

AFTOTMD
1,64 0,15 1,67 0,37 All
1,87 0,19 1,73 0,45 Level,Lev007,Lev014
1,69 0,18 1,97 0,52 NDay,Rain180,Level

AFTOTMI
0,41 0,11 0,44 0,40 All
0,44 0,12 0,44 0,42 NDay,Lev060,Lev014,Lev007,Lev030,Lev180,Lev090,Level
0,54 0,18 0,46 0,60 NDay,Rain180,Lev060
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Figure 3: Word clouds for the radial displacements analysed.
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Figure 4: Relative influence of inputs in radial displacements, aggregated by type. The values in parenthesis
correspond to the relative influence of time. Since the result is normalised, they sum 100 for each location.
Hence, the distance to the x + y = 100 line (dashed) is proportional to the importance of the time effect.
It should be noted that the devices in symmetrical locations with respect to the dam axis are grouped (i.e.
P6IR3 and P5DR3). The arrows highlight the path of increasing influence of temperature in both plots, also
symmetrical.

3.2. Variable importance

3.2.1. Radial displacements

Figure 3 depicts the RI of the predictors for each radial displacement considered. While
Tair90 was the most relevant thermal input for the central sections (P1DR and P2IR),
Tair060 took its place for those in the vicinity of the abutments (P5DR and P6IR). The
higher thermal inertia of the central blocks might be due to their greater average thickness.

As for the hydrostatic load, the reservoir level at the date of the record was always more
influential than all the moving averages, what reveals an immediate response of the dam to
this load.

The RI of the rate of reservoir level variation was similar to that of rainfall, hence
negligible.

From an overall viewpoint, a high degree of symmetry was observed, with the remarkable
exception of the greater influence of NDay for P1DR1 and P1DR4 (Figure 3). This issue was
further investigated by aggregating the relative influence of inputs by type: hydrostatic load,
air temperature and time (Table 1). Figure 4 shows the result for each location considered.
The symmetry is neatly observed, as well as the increasing RI of the temperature with
respect to that of the hydrostatic load, from the foundation towards the crown, and from
the centre to the abutments.

3.2.2. Leakage

The RI of the inputs for the leakage flows revealed a clear different behaviour between the
right (AFMD50PR and AFTOTMD) and the left margins (AFMI90PR and AFTOTMI).
While the former responded mainly to the hydrostatic load, with little inertia, the latter
showed a remarkable dependence on time, as well as a greater relevance of several rolling
means of reservoir level. Figure 5 shows the word clouds for the leakage flows.

The low inertia with respect to the hydrostatic load suggests that most of the leakage
flow comes from the reservoir, while the effect of rainfall is negligible.
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Figure 5: Word clouds for the leakage measurement locations analysed

Finally, it should be noted that temperature was irrelevant.

3.3. Partial dependence

3.3.1. Radial displacements

Figure 6 displays the univariate partial dependence plots for the radial displacements.
The association between the air temperature and the reservoir level is intuitive: high tem-
perature generates displacements towards upstream (positive direction in the vertical axis),
due to concrete expansion, coerced by the abutments. The effect of the hydrostatic load
is the opposite: high levels imply greater load and displacement towards downstream, and
vice-versa.

These plots also show that the air temperature had greater influence than reservoir level
for P5D and P6I (steeper curves with greater range of variation). The inverse effect was
observed for P1DR4 and P2IR4, whereas both had similar relevance for P1DR1 and P2IR1.
These results are coherent with the computed RI (Figures 3 and 4).

A deeper analysis was performed for P1DR1, which featured the greatest influence of
time. The correspondent plot in Figure 6 shows a small step at the beginning of the period,
followed by a sensibly constant behaviour until 1990, and a second larger step that stabilised
afterwards. The bivariate plots for P1DR1 in Figure 7 show the step around 1991-1992 for
the whole ranges of level and temperature.

This qualitative behaviour was observed for all displacements with lower magnitude,
except for P5DR3. The effect was more clearly registered for P1DR1 and P1DR4, which in
turn showed a greater influence of time (see Figure 3 and the Appendix).

Figure 8 shows the contribution of each action as obtained with the HST model. Unlike
the previous case, the influence of time is linear, equivalent to a constant-rate displacement
towards downstream.
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Figure 6: Partial dependence plot for the radial displacements analysed. Movement towards downstream
correspond to lower values in the vertical axis, and vice-versa.

Figure 7: Interaction plots for P1DR1. It should be noted that the step along the temporal axis is observed
for all the range of temperature and level.
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Figure 8: P1DR1. Contribution of the air temperature, the hydrostatic load and the time as drawn from
the HST model.

This different model interpretation deserved a further verification. Not only because the
results were substantially different, but also because the time effect is essential for the early
detection of dam deterioration. In view of the temporal variation as captured by the BRT
model, it could be concluded that some anomaly happened around 1991, which stabilised
in the later years. On the contrary, the HST model interpreted a constant drift towards
downstream of roughly 0.2 mm/year which might be serious in terms of the dam safety.

As mentioned above, the shape of the output-time dependency must be defined a priori
for HST (in this case, a combination of exponential and negative linear functions was chosen),
while in principle it can take any form for BRT. Therefore, it could be concluded that the
actual behaviour of the dam was that showed by the BRT model, and that the result of the
HST was due to the previously imposed restriction.

However, the average reservoir level in the period 1991-1997 was significantly higher than
before 1991 (Figure 2), and might be the cause of the step registered in Figure 6: it represents
a greater displacement towards downstream in the most recent period, which is consistent
with the higher average hydrostatic load.

The verification was performed by fitting a new BRT model to the artificial data generated
(Ŷmod) without time variation (eq. 7). It should be recalled that the artificial time series
data maintains the original reservoir level variation, and thus the higher load in the 1991-
1997 period. Figure 9 contains the partial dependence plot for this BRT model, which
clearly shows that the independence of the artificial data with respect to time was correctly
captured. This result confirms that the step in the time dependence captured by BRT is not
a consequence of the higher hydrostatic load in 1991-1997.

As regards the HST model, it can be concluded that the linear trend is the best least
squares fit that can be obtained to the observed behaviour (constant-step-constant) with a
linear function. This might lead to a wrong interpretation of dam performance, not supported
by the observed data.

It should be mentioned that more sophisticated versions of the HST model can be em-
ployed, and in particular a step can be considered, as Carrère and Noret-Duchêne showed
in their analysis of the Schlegeiss Dam [33]. However, they only decided to try a step after
observing a previous linear fit, where the sudden change in dam behaviour could be noted. In
general, it can be difficult to identify a change in dam behaviour by simple data exploration,
as is the case of La Baells Dam (see Figure A3). In this sense, the non-parametric nature of
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Date Tair090 (ºC) Level (m.a.s.l.)

Figure 9: Partial dependence plot for the artificial time-independent data. P1DR1. It should be noted that
time influence is negligible.

BRT models helps to identify performance changes of any type.

3.3.2. Leakage flows

Although the word clouds showed that neither rainfall nor temperature were influential
on the leakage flow, partial dependence plots were generated as a further verification for the
simplest model (M3 model; section 2.5).

Figure 10 contains the results, which confirm the conclusion of the word clouds: the time
effect is irrelevant in the right abutment, except by certain erratic behaviour in the first two
years and in the last three. On the contrary, a sharp decrease in leakage flow is revealed
around 1983 for both locations in the left abutment. A lower decrease is observed in later
years.

These results might be due to the colmatation of the cracking network in the left abut-
ment, which would have led to lower permeability and leakage flow.

The shape of the effect of the hydrostatic load is sensibly exponential, with low influence
for reservoir level below 610 m.a.s.l.

4. Summary and Conclusions

BRT models with different degree of variable selection were fitted to 8 radial displace-
ments and 4 leakage flows at La Baells Dam. The relative influence of each input was
computed and depicted via word clouds, which offered an efficient visualisation of the over-
all response of the dam. These graphs, together with the univariate and bivariate partial
dependence plots, allowed interpretation of the BRT models: useful information regarding
dam behaviour was obtained, such as the thermal inertia, the variation over time, and the
performance of each area of the dam body.

The results showed a symmetrical behaviour of the dam in terms of displacements, as
well as some interesting patterns, which will be the subject of future research:

• the thermal inertia was higher near the abutments.

• the RI of the temperature with respect to that of the hydrostatic load increased from
the foundation towards the crown, and from the centre to the abutments.
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Figure 10: Partial dependence plot for leakage flows.

As regards the leakage flows, the different behaviour over time of each abutment was
identified.

The amount of predictors considered in the BRT model did not significantly affect the
prediction accuracy: the results confirm that the algorithm efficiently discard the less relevant
inputs.

The application of BRT models to make predictions for a more recent period than that
used for training involves extrapolation over time (provided that some time dependent pre-
dictor is considered). Hence, results should be analysed carefully, in particular if the time
effect seems relevant. This applies to any data-based model considering time as input, in-
cluding HST.

A sudden change in radial displacements was identified by the BRT model, especially
for P1DR1. By contrast, the HST model suggested a constant-rate drift in the downstream
direction. It was verified that the step towards downstream captured by the BRT model
was not due to the higher average hydrostatic load actually registered for the 1991-1997
period. This suggests that partial dependence plots based on BRT models are more effective
to identify performance changes, as they are not coerced by the shape of the regression
functions that need to be defined a priori for HST.

The flexibility and robustness of BRT models make them suitable to model any output
variable, as well as to identify changes in dam behaviour. Nevertheless, data-based models
should never be the only source of information to make decisions on dam safety. Their
results need to be checked against those provided by other means, such as deterministic
models. Also, all available information about the dam behaviour should be taken into
account, especially that obtained by visual inspection.
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Appendix A.

All the plots generated during the analysis are included herein: the time series of mean
air temperature and daily rainfall, and a set of plots for each target variable:

• The 2D and 3D partial dependence plots for BRT Model 3 fitted to the original data

• The location of each device within the dam body

• The 2D partial dependence plot for BRT Model 3 fitted on the altered version of the
target (independent of time)

• The word cloud for Model 1

• Observations versus BRT model predictions for the training and validation sets, to-
gether with the model residuals.

The partial dependence for the artificial data was included to highlight that the BRT
models correctly captured the time independence when it was imposed in the time series of
the target variable.
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Figure A1: Time series of the mean air temperature at La Baells dam site.

Figure A2: Time series of the daily rainfal at La Baells dam site.
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(b)

(f)

P1DR1

(d)

(c)
Date Tair090 (ºC) Level (m.a.s.l.)

Date Tair090 (ºC) Level (m.a.s.l.)

Figure A3: P1DR1. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c) Idem for artificial
data (time-independent); (d) Device location; (e) Word cloud of relative influence; (f) Model fit and residuals
for the train and the validation sets.
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(f)

P1DR4

(d)

(c)

Train Validation

Figure A4: P1DR4. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c) Idem for artificial
data (time-independent); (d) Device location; (e) Word cloud of relative influence; (f) Model fit and residuals
for the train and the validation sets.
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(f)
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(d)

(c)

Train Validation

Figure A5: P2IR1. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c) Idem for artificial
data (time-independent); (d) Device location; (e) Word cloud of relative influence; (f) Model fit and residuals
for the train and the validation sets.
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(d)

(c)

Train Validation

Figure A6: P2IR4. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c) Idem for artificial
data (time-independent); (d) Device location; (e) Word cloud of relative influence; (f) Model fit and residuals
for the train and the validation sets.
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(e)
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(f)

(d)

(c)

Train Validation

P5DR1

Figure A7: P5DR1. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c) Idem for artificial
data (time-independent); (d) Device location; (e) Word cloud of relative influence; (f) Model fit and residuals
for the train and the validation sets.
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P5DR3

Figure A8: P5DR3. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c) Idem for artificial
data (time-independent); (d) Device location; (e) Word cloud of relative influence; (f) Model fit and residuals
for the train and the validation sets.
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P6IR1

Figure A9: P6IR1. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c) Idem for artificial
data (time-independent); (d) Device location; (e) Word cloud of relative influence; (f) Model fit and residuals
for the train and the validation sets.
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P6IR3

Figure A10: P6IR3. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c) Idem for artificial
data (time-independent); (d) Device location; (e) Word cloud of relative influence; (f) Model fit and residuals
for the train and the validation sets.
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AFMD50PR

Figure A11: AFMD50PR. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c) Idem for
artificial data (time-independent); (d) Device location; (e) Word cloud of relative influence; (f) Model fit
and residuals for the train and the validation sets.
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AFMI90PR

Figure A12: AFMI90PR. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c) Idem for
artificial data (time-independent); (d) Device location; (e) Word cloud of relative influence; (f) Model fit
and residuals for the train and the validation sets.

31
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(c)

Train Validation

AFTOTMD

Figure A13: AFTOTMD. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c) Idem for
artificial data (time-independent); (d) Device location; (e) Word cloud of relative influence; (f) Model fit
and residuals for the train and the validation sets.
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AFTOTMI

Figure A14: AFTOTMI. (a) 3D partial dependence plot; (b) 2D Partial dependence plot; (c) Idem for
artificial data (time-independent); (d) Device location; (e) Word cloud of relative influence; (f) Model fit
and residuals for the train and the validation sets.
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Posibilidades de la inteligencia artificial en el análisis 
de auscultación de presas 
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1. Introducción 
El comportamiento estructural de las presas de embalse es difícil de predecir con precisión. 
Los modelos numéricos para el cálculo estructural resuelven bien las ecuaciones de la 
mecánica de medios continuos, pero están sujetos a una gran incertidumbre en cuanto a la 
caracterización de los materiales, especialmente en lo que respecta a la cimentación. Así, es 
difícil discernir si un estado que se aleja en cierta medida de la normalidad supone o no una 
situación de riesgo estructural. 

Por el contrario, muchas de las presas en operación cuentan con un gran número de 
aparatos de auscultación, que registran la evolución de diversos indicadores como los 
movimientos, el caudal de filtración, o la presión intersticial, entre otros. Aunque hoy en día 
hay muchas presas con pocos datos observados, hay una tendencia clara hacia la instalación 
de un mayor número de aparatos que registran el comportamiento con mayor 
frecuencia (Restelli 2008)0. Como consecuencia, se tiende a disponer de un volumen 
creciente de datos que reflejan el comportamiento de la presa. En la actualidad, estos datos 
suelen tratarse con métodos estadísticos para extraer información acerca de la relación 
entre variables, detectar anomalías y establecer umbrales de emergencia.  

El modelo general más común es el denominado HST (Hydrostatic-Season-Time), que calcula 
la predicción de una variable determinada a partir de una serie de funciones que tienen en 
cuenta los factores que teóricamente más influyen en la respuesta: la carga del embalse, el 
efecto térmico (en función de la época del año) y un término irreversible. El método  fue 
desarrollado en 1967 (Simon et al. 2013) por ingenieros de Électricité de France (EDF) y se ha 
aplicado especialmente a la predicción de desplazamientos (Swiss Comittee on Dams, 2003).  
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Aunque se ha utilizado con éxito durante mucho tiempo, se han detectado algunas 
limitaciones del método, como el hecho de que asume que los tres efectos son 
independientes, y que las funciones deben definirse a priori. Esto permite un margen de 
mejora en caso de que no representen el efecto real en un caso concreto (Simon et al., 
2013). Además, no permite reproducir la inercia de la presa en su respuesta frente a ciertas 
solicitaciones, como es el caso de la relación entre el nivel de embalse y la presión intersticial 
en presas de materiales sueltos (Bonelli y Radzicki 2008). 

Puntualmente se han aplicado modelos más complejos para solventar las limitaciones 
mencionadas. En algunos casos se han introducido otras variables como la velocidad de 
variación del nivel de embalse (Sánchez Caro 2003), y en otros se han utilizado expresiones 
que se adaptan mejor al efecto de inercia, como la función impulso-respuesta (Bonelli y 
Radzicki 2008).  

En otros campos de la ciencia, como la medicina o las telecomunicaciones, el volumen de 
datos es mucho mayor, lo que ha motivado el desarrollo de numerosas herramientas para su 
tratamiento y para la generación de modelos de predicción. Algunas de ellas, como las redes 
neuronales, ya han sido aplicadas al caso de la auscultación de presas (Santillán et al. 2010, 
Mata 2011, Simon et al. 2013) con resultados prometedores. 

La aplicación de estas técnicas puede ayudar a mejorar la precisión de los modelos de 
predicción, y a entender mejor el comportamiento de la presa. Con esta idea se ha puesto 
en marcha el proyecto de investigación iComplex, en el que participan la empresa 
DACARTEC, la Universidad Politécnica de Madrid (UPM) y el Centro Internacional de 
Métodos Numéricos en Ingeniería (CIMNE).  

Una de las tareas comprendidas en la primera fase del proyecto es la revisión de diversas 
herramientas de inteligencia artificial de cara a su aplicación a la predicción del 
comportamiento de presas: movimientos, tensiones, filtraciones, etc. Una de las 
herramientas que se está considerando como potencialmente útil está basada en los 
llamados bosques aleatorios. A continuación se describen someramente las bases de esta 
tecnología y se muestran resultados preliminares de su aplicación a un caso piloto. 

2. Sobre los bosques aleatorios 
Los bosques aleatorios (Breiman 2001) son modelos que permiten predecir el valor de una 
determinada variable (variable objetivo) a partir de una serie de variables predictoras, cuyo 
valor es conocido. Como los métodos estadísticos, requiere de unos datos de 
entrenamiento, a partir de los cuales se ajusta el modelo al caso de estudio. Un bosque 
aleatorio está formado por un conjunto de árboles de decisión. La predicción del bosque es 
el promedio de las predicciones de los árboles que lo forman. Por tanto, se trata de un 
modelo de conjunto (Martínez, 2006).  

Los árboles de decisión se basan en la división sucesiva del conjunto de datos observados en 
grupos de casos “similares”. Suelen denominarse árboles de regresión aquellos cuya variable 
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objetivo es continua, y árboles de clasificación cuando es discreta o categórica. En adelante 
se utilizará por tanto el término árbol de regresión, ya que en auscultación de presas se trata 
de predecir variables continuas. La predicción un árbol de regresión es en general un valor 
constante para cada grupo, igual a la media de los valores observados. Para explicar el 
proceso de generación de un árbol de decisión, se utiliza un ejemplo sencillo relacionado con 
la auscultación de presas: supongamos que se desea ajustar un modelo para predecir el 
caudal de filtración en un determinado aforador a partir únicamente del nivel de embalse. La 
Figura 1 muestra la relación entre las variables de entrada (nivel de embalse) y objetivo 
(caudal de filtración). 

 

Figura 1. Caudal de filtración en función del nivel de embalse en el caso de ejemplo 

En primer lugar, se dividen los datos en dos regiones según el nivel de embalse (en el 
ejemplo, según sea mayor o menor de 625,6; Figura 2). A continuación, una de las regiones 
creadas se subdivide a su vez en dos, y el proceso continúa hasta que se alcanza algún 
criterio de parada. En el ejemplo, el resultado final es la división de los casos en 7 grupos. La 
predicción del modelo es la media de los valores observados en cada grupo, y por tanto el 
resultado es una sucesión de escalones (Figura 3). 

 

Figura 2. Árbol de regresión para la predicción del caudal de filtración en función del nivel de 
embalse en el caso de ejemplo. 
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El algoritmo de generación del árbol calcula la mejor división posible en cada paso como la 
que minimiza el error de predicción. Si hubiera más de una variable predictora, se calcula 
para cada una de ellas la división óptima y a continuación se selecciona la variable que 
produce una división más precisa (Hastie et al. 2009).  

 

Figura 3. Predicción del árbol de regresión (en rojo), en comparación con los datos registrados (en 
negro) 

Algunas de las propiedades más representativas de los árboles de decisión son las siguientes: 
a) su coste computacional es moderado; b) se adaptan bien a problemas no lineales; 
c) manejan sin problemas mezclas de variables continuas y discretas; además, las continuas 
pueden tener rangos muy diferentes lo que evita tener que transformarlas previamente, 
como ocurre con otros métodos; d) permiten considerar valores no medidos; e) los valores 
atípicos no modifican sustancialmente el resultado; f) no es necesario adoptar ninguna 
hipótesis a priori sobre la relación entre variables, ni sobre cuáles son más relevantes; g) son 
inestables, en cuanto a que una pequeña variación de los datos de entrenamiento puede 
producir una variación importante del resultado. Este problema puede convertirse en una 
ventaja si se utilizan  métodos avanzados basados en árboles, como es el caso de los 
bosques aleatorios. 

Los bosques aleatorios pertenecen a los denominados modelos  de conjuntos, basados en la 
generación de un número (generalmente elevado) de modelos sobre una misma base de 
datos (o subconjuntos de ella). La predicción se calcula como la media de las predicciones de 
los modelos individuales. Los bosques aleatorios son un conjunto de árboles de decisión 
generados a partir de perturbaciones de los datos observados. El aspecto clave que 
caracteriza el método es que busca que los árboles sean independientes entre sí. Para ello, 
la diferencia principal con un árbol de decisión convencional es que en cada división, en 
lugar de considerar todas las variables predictoras disponibles para seleccionar la que 
minimiza el error, se analiza únicamente un subconjunto aleatorio de las mismas 
(Breiman 2001). De este modo, se aprovecha la propiedad de los árboles de decisión por la 
cual pequeñas perturbaciones en las primeras divisiones del espacio provocan resultados 
apreciablemente diferentes. Al introducir aleatoriedad en la construcción de cada árbol, se 
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consigue un conjunto de ellos sensiblemente independientes, de modo que se captura una 
proporción mayor de los patrones presentes en los datos de entrenamiento, y el resultado 
final mejora. Además, cada árbol se genera a partir de un conjunto de datos diferente, 
obtenido de los originales tomando una muestra aleatoria con repetición. Es decir, cada 
nuevo árbol se construye a partir de una muestra en la que aproximadamente un tercio de 
los datos originales aparece una vez, otro tercio aparece repetido, y el tercio restante no 
aparece. 

Los bosques aleatorios han cobrado gran popularidad como método para generar modelos 
predictivos por su sencillez de programación y sus buenos resultados en diversas 
aplicaciones  (Ganuer et al. 2008). Si bien suelen considerarse un modelo de caja negra, en 
cuanto a que no proporciona parámetros con interpretación física, se han desarrollado 
herramientas que permiten cuantificar cómo afecta cada variable al resultado final. En 
concreto, se define el índice de importancia de una variable como la variación del error de 
predicción que se produce al modificar aleatoriamente su valor, manteniendo el resto. Las 
variables más importantes provocarán un mayor aumento del error al ser permutadas. 

3. Ejemplo de aplicación 
Se ha elaborado un modelo de predicción en un caso de prueba basado en bosques 
aleatorios. Las variables que se pretende predecir son los caudales de filtración de una presa 
tomada como caso piloto. El periodo de datos disponible comprende desde la puesta en 
carga hasta el año 2008. Se han considerado los aforadores con un mayor número de datos 
registrados en ese periodo, que son los de la Tabla 1.  

Además de los datos de aforo, del nivel de embalse y de otras magnitudes que no son objeto 
de este trabajo, se miden en la presa variables ambientales como precipitación y 
temperatura del aire. 

Para esta primera prueba, las variables utilizadas para predecir el valor del caudal de 
filtración son: a) el número de día del registro, contado a partir de la puesta en carga de la 
presa; b) el año; c) el nivel de embalse medio el día de la lectura; d) la temperatura media 
ambiental; e) la precipitación acumulada en los 30 días anteriores a la lectura; f) la velocidad 
media de variación del nivel de embalse en los 10 días anteriores a la lectura; g) la media 
móvil de 60 días del nivel de embalse. 

Aforador Margen Nº datos disponible 
md50pr Derecha 1023 
md90pr Derecha 748 
totmd Derecha 1071 
mi50p Izquierda 1066 
mi90pr Izquierda 1001 
totmi Izquierda 1021 

Tabla 1. Número de datos disponibles en cada aforador 
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Se han dividido los datos disponibles en dos grupos. El primero se utiliza para ajustar los 
parámetros del modelo (datos de entrenamiento), y el segundo para comprobar la bondad 
del ajuste (datos de validación). La división se ha realizado de dos formas: a) el 60% de los 
datos más antiguos para entrenamiento, y el 40% más reciente para validación. Este es el 
criterio utilizado en el análisis de seguridad de la presa, así como en el trabajo de Santillán et 
al., que utiliza redes neuronales (Santillán 2010); b) división aleatoria en todo el periodo 
registrado, con un 70% para entrenamiento y un 30% para validación. 

En la 0 se muestra el error resultante en cada caso. 

RMSE (l/min) 
División de 
los datos 

60%-40% temporal 70%-30% aleatoria 

Aforador Entrenamiento Validación Entrenamiento Validación 
md50pr 2,15 2,64 2,12 1,77 
md90pr 0,40 1,58 0,55 0,47 
totmd 2,56 4,42 2,41 2,64 
mi50p 0,48 0,41 0,45 0,41 
mi90pr 0,16 0,24 0,17 0,10 
totmi 0,67 1,05 0,62 0,60 

Tabla 2. Errores de predicción del modelo (raíz del error cuadrático medio) 

Como ejemplo, en la Figura 4 muestra el resultado para el aforador “md50pr”, que es al 
que corresponde también la Figura 3. Puede apreciarse la mejora de la predicción del 
bosque aleatorio respecto del árbol de regresión individual. 

 

Figura 4. Predicción del modelo basado en bosques aleatorios (en rojo), en comparación con los 
datos registrados (en negro). Aforador “md50pr”. 

Se ha calculado también el índice de importancia de las variables, y llama la atención el 
hecho de que las relativas al periodo de medición (número de día desde la puesta en carga y 
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año de lectura) son siempre más relevantes que otras como la temperatura o la 
precipitación. En algunos casos, llegan a serlo más incluso que el nivel de embalse (Figura 5 
izquierda). Para verificar estos resultados, se ha dibujando la relación entre el nivel de 
embalse y el caudal de filtración separando los registros por intervalos temporales. La 
Figura 6 muestra dos gráficos de este tipo, donde se observa claramente cómo en algunos 
casos (izquierda) el caudal de filtración depende en gran medida del periodo de la vida de la 
presa, lo cual no sucede en otros (derecha). Otro índice de la variación de la respuesta de la 
presa con el tiempo lo representa el hecho de que el error de entrenamiento es similar 
independientemente de cómo se dividan los datos, mientras que el de validación es 
sensiblemente inferior si se toman aleatoriamente. Si como se observa en la Figura 6 
izquierda la respuesta de la presa varía con el tiempo, es lógico que un modelo entrenado 
con los datos de un periodo determinado se ajuste peor al aplicarlo a un periodo diferente.  

 
Figura 5. Importancia de las variables predictoras en dos de los aforadores estudiados. Derecha: 

"totmi", donde el día del registro es la variable más importante, lo que denota una evolución 
temporal en el comportamiento. Izquierda:  "md50pr", donde el nivel de embalse es claramente lo 

que más influye en la filtración.  

 

Figura 6. Caudal de filtración “totmi” (izquierda) y "md50pr" (derecha) en función del nivel de 
embalse, separados por periodos de tiempo. Se observa que en el primer caso el comportamiento 
depende de manera importante del año de lectura, mientras que en el segundo depende más del 

nivel de embalse, lo cual es coherente con los índices de importancia calculados. 

Los resultados obtenidos hasta el momento con los bosques aleatorios sugieren que pueden 
ser una herramienta útil no solo como modelo de predicción, sino también para obtener 
información acerca del comportamiento de la presa, y del efecto de las variables de entorno. 
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En la actualidad se está trabajando para desarrollar criterios de selección de variables, así 
como para determinar cómo evoluciona la precisión del modelo en función del número de 
datos disponible. 
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AVANCES EN EL TRATAMIENTO Y ANÁLISIS DE DATOS DE 
AUSCULTACIÓN DE PRESAS 
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Rafael Morán4 

Eugenio Oñate.5 
RESUMEN: Los avances en los instrumentos de medida y en las técnicas de 

transmisión y almacenamiento de información han permitido aumentar el control 
de la seguridad de las presas, con medidas más fiables, precisas y frecuentes. 
Sin embargo, los métodos de tratamiento y análisis de los datos de auscultación 
no han evolucionado tanto, y con frecuencia se limitan a gráficos y modelos es-
tadísticos sencillos. 

Existen multitud de herramientas desarrolladas en diversos campos, gene-
ralmente alejados de la ingeniería civil, que facilitan el análisis y modelación de 
sistemas complejos: redes neuronales, redes complejas o bosques aleatorios son 
algunos ejemplos.  

Estas técnicas han sido exploradas, implementadas y aplicadas a casos de 
ejemplo reales. Las estimaciones obtenidas son en general más precisas que las 
que resultan de aplicar los métodos convencionales, con lo que se puede definir 
mejor el rango de comportamiento normal de la presa. Además, permiten desve-
lar interacciones complejas entre variables de distinto tipo, más allá de la rela-
ción con el tiempo y el nivel de embalse. Por tanto, estos métodos, manejados e 
interpretados por expertos en ingeniería de presas, pueden ser de gran ayuda 
para conocer mejor el comportamiento de la presa y aumentar su seguridad. 
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1. INTRODUCCIÓN 
El objetivo principal de los sistemas de auscultación de presas es la detec-

ción temprana de anomalías, de modo que sea posible tomar las medidas ade-
cuadas para su corrección, y en última instancia, para evitar averías graves y 
la rotura. 

La normativa requiere definir unos valores máximos (también mínimos en 
algunos casos) admisibles para determinados aparatos de auscultación, de 
modo que al verse superados deben activarse unos determinados protocolos 
de actuación.  

Este rango de funcionamiento “normal” se basa en la estimación del com-
portamiento de la presa en unas determinadas condiciones de operación (prin-
cipalmente nivel de embalse y temperatura). Para el cálculo de la respuesta en 
situación normal y la determinación del rango admisible se utilizan modelos 
de predicción de diversa naturaleza. 

Los modelos determinísticos se basan en las leyes de la física, y general-
mente consisten en un modelo estructural de elementos finitos, que considera 
con cierto grado de detalle las acciones sobre la presa. Son fundamentales en 
la fase de proyecto y el inicio de la explotación de la presa, si bien requieren 
adoptar simplificaciones importantes con respecto a las acciones [1] y a la res-
puesta estructural de la presa y el cimiento [2], que en la inmensa mayoría de 
los casos se consideran medios continuos elásticos lineales. Esto lleva a dis-
crepancias entre sus resultados y la respuesta real de la presa, medida con los 
aparatos de auscultación.  

Los modelos estadísticos utilizan los datos realmente medidos por el siste-
ma de auscultación de la presa durante un periodo determinado para predecir 
su respuesta en un periodo posterior. Ello implica que no pueden aplicarse 
durante la fase inicial de la vida de la presa, hasta que no se han recopilado 
datos suficientes para ajustar los parámetros del modelo (el periodo necesario 
depende de cada caso, habiendo estudios que lo cifran en 5 [3], 10 [4] y 12 
años [5]). Los métodos estadísticos convencionales presentan limitaciones im-
portantes, como se ha puesto de manifiesto en trabajos recientes [9]. 

En los últimos años, la UPM y el CIMNE han puesto en marcha una inves-
tigación conjunta que pretende mejorar la seguridad de presas extrayendo la 
máxima información de los datos de auscultación. Se basa en dos ideas fun-
damentales: 

• El conjunto presa-cimiento es un sistema complejo cuyos elementos 
son las series temporales de registro (de variables externas e inter-
nas). A partir del análisis de dichas series de registros pueden defi-
nirse conexiones o relaciones entre los elementos del sistema. 

• Existen herramientas de inteligencia artificial, redes complejas y 
sistemas expertos que pueden ser útiles para analizar el sistema en 
conjunto, estudiar las relaciones entre sus elementos, y generar 
modelos de predicción de las variables de respuesta. 

En la comunicación se incluyen algunos de los resultados obtenidos hasta 
el momento. 



2. EXPLORACIÓN DE DATOS 
La primera operación a realizar sobre los datos de auscultación, una vez 

recibidos y almacenados, es el análisis gráfico. Es muy frecuente dibujar la 
evolución de los registros a lo largo del tiempo, así como en relación con las 
variables externas más influyentes, que generalmente son el nivel de embalse 
y la temperatura. 

A primera vista, estos gráficos permiten tener una idea de los rangos de va-
riación de las variables, el volumen de datos disponible, y las lagunas en las 
series de datos. Si además se lleva a cabo por un técnico experto y cualificado, 
pueden detectarse cambios claros de tendencia en las medidas, y tener una 
primera idea de si el comportamiento responde a lo esperado.  

Las herramientas utilizadas para la generación de estos gráficos suelen ser 
las ofimáticas convencionales. En ocasiones se han desarrollado también he-
rramientas específicas que incorporan ciertas funcionalidades, como la indica-
ción de determinadas incidencias, ya sean del sensor o generales de la presa 
[6]. 

Los avances informáticos permiten de una manera fácil generar gráficos 
muy flexibles e interactivos. En el curso de la investigación, se han integrado 
diversas tecnologías para generar una herramienta de exploración de datos 
interactiva y adaptable, que permite: 

1. Seleccionar las variables que se quieren visualizar en cada eje del 
gráfico. 

2. Seleccionar qué variables utilizar para determinar el color y el tama-
ño de la visualización. 

3. Navegar de forma dinámica sobre el gráfico, ampliando las regiones 
de interés en cada uno de los ejes. 

4. Acceder al gráfico e interactuar con él desde cualquier dispositivo 
con acceso a internet, en cualquier momento. 

La Figura 1 muestra una imagen de la aplicación. En el menú de la iz-
quierda se pueden seleccionar las variables que se quieren representar en los 
ejes, así como las utilizadas para definir el tamaño y el color de los puntos. 

En la Figura 2 se incluye un ejemplo de visualización dinámica de series 
temporales, con dos niveles de aumento diferentes. 

Estas herramientas gráficas permiten además tomar decisiones para la ge-
neración de modelos de predicción. Como ejemplo, en la Figura 1 se observa la 
disminución del caudal de filtración (eje de ordenadas) con el tiempo (mapa de 
color) y su variación cuasi lineal con el nivel de embalse (eje de abscisas) para 
los registros más recientes. A la vista de este gráfico parece razonable restrin-
gir la selección a los datos más recientes para después ajustar una regresión 
lineal dependiente del nivel de embalse.  

 



 

 

 

 

 

 

Figura 1. Aforo de filtración en función del nivel de embalse. Los colores se corres-
ponden con el año de registro. Se observa que el caudal ha disminuido con el tiempo, 
y que su relación con el nivel de embalse es sensiblemente lineal en el periodo más 
reciente. 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figura 2. Interfaz de la aplicación para exploración dinámica de datos. Se muestra 

la evolución temporal de tres movimientos en péndulos. Arriba: series completas. Aba-
jo: ampliación de los datos del año 2007. 



3. INTERPRETACIÓN DEL COMPORTAMIENTO CONJUNTO. LAS 
REDES COMPLEJAS 

La aplicación de la Teoría de Redes Complejas al análisis de los registros de 
auscultación se plantea como una posibilidad adicional dentro de la explora-
ción de datos permitiendo el alcance de un punto de vista global o sistémico, a 
diferencia de otros procedimientos exploratorios más específicos (como los an-
teriormente descritos). Es posible definir la red compleja a partir de las varia-
bles o las series registradas en cada aparato (que serán los elementos o nudos 
de la red), mientras que las posibles conexiones entre las parejas de nudos se 
obtendrán a través de la comparación de los datos contenidos en cada una de 
las series, mediante la fijación de un determinado criterio. En las primeras 
aplicaciones [7], el criterio escogido para valorar la intensidad de la relación 
entre cada pareja de series fue el valor del mejor coeficiente de determinación 
resultante del ajuste de polinomios de segundo grado a los datos coincidentes 
en fecha entre ambos aparatos (se recuerda que el citado coeficiente establece 
una medida normalizada de la bondad del ajuste obtenido). 

Una vez establecida la red compleja, la Teoría comprende diferentes técni-
cas que permiten efectuar una descriptiva del sistema: 

• Medidas de centralidad para valorar la importancia de cada nudo o 
serie dentro del conjunto conforme a diferentes criterios. 

• Algoritmos de partición o de clasificación para la detección de con-
juntos homogéneos de aparatos. 

• Caracterización de la red, de forma que puedan establecerse parale-
lismos entre fenómenos de diversos campos cientifico-técnicos. 

Otro de los aspectos esenciales de las redes complejas es su representación 
en forma de grafos (conjuntos de nudos y lazos), donde la posición de los ele-
mentos puede definirse mediante diferentes algoritmos de distribución, y en 
los que es posible establecer mapas de colores y distribuciones de tamaños 
asociados a los nudos o a los lazos, aumentando considerablemente la infor-
mación que se visualiza en una sola imagen. También es posible representar la 
red compleja tomando como base la ubicación real de los aparatos sobre la 
presa. Todas estas posibilidades de representación pueden combinarse con un 
enfoque dinámico o evolutivo de la red, para detectar así pautas de comporta-
miento cronológico o derivas temporales, así como anomalías. 

De este modo, las redes complejas y sus representaciones en forma de grafo 
pueden servir como un soporte de visualización global del sistema presa de 
gran elocuencia, que además puede ser descompuesto o sometido a diferentes 
criterios de filtrado para la realización de análisis pormenorizados por parte 
del ingeniero experto. (En relación a la cantidad de información representada, 
se recuerda aquí que, si el número de nudos del sistema es de orden n, el nú-
mero de lazos o conexiones representadas será de orden n2/2). 

Actualmente se está explorando la posibilidad de utilizar las redes comple-
jas así obtenidas como soporte para la selección de variables de entrada para 
modelos de predicción, gracias a que los diferentes algoritmos de partición 
pueden ayudar a evitar la multi-colinealidad así como a enriquecer la informa-
ción de entrada empleada para la predicción. 



 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figura 3. Ejemplo de representación de una red compleja obtenida a partir del aná-
lisis de los datos procedentes de una presa bóveda. Los colores de los nudos represen-
tan en este caso el tipo de aparato o variable. Los colores de las conexiones dan una 
idea de la intensidad de la relación entre los nudos que une. El algoritmo de distribu-
ción sobre el plano tiene en cuenta los grupos de aparatos densamente interconecta-
dos. 

4. MODELOS DE PREDICCIÓN NO CONVENCIONALES 
4.1. INTRODUCCIÓN 

Los sistemas de aviso son claves en el sistema de auscultación. Con fre-
cuencia, se implementan herramientas que lanzan un aviso cuando se registra 
un valor que queda fuera de un rango determinado previamente. Dicho rango 
de comportamiento “normal” se determina a partir de un modelo de predic-
ción, que estima el valor más probable de la variable en cuestión en función de 
las variables exteriores de la presa: fundamentalmente, temperatura, nivel de 
embalse, y edad de la estructura. 

Estos modelos suelen basarse en relaciones estadísticas sencillas de las va-
riables mencionadas, siendo el método “HST” el más común. Se trata de una 
regresión lineal múltiple, de modo que la variable objetivo se calcula como una 
combinación lineal de: 

• Varias potencias del nivel de embalse 

• La temperatura ambiente, que suele considerarse como una función 
senoidal. 

• Una función del tiempo, que considera los efectos no reversibles. 

Este modelo se desarrolló originalmente para calcular el movimiento en 
presas bóveda, si bien se ha aplicado con algunas variantes para otro tipo de 
variables, como, por ejemplo, el aforo de filtraciones [8]. 



El método presenta limitaciones, según han puesto de manifiesto investiga-
ciones recientes [5], [9]. Las principales son: 

1. Asume que las variables son independientes, lo cual no siempre se 
cumple. 

2. Asume que las relaciones entre las variables exteriores y la respues-
ta de la presa son lineales, lo cual tampoco es cierto con carácter ge-
neral. 

Para solventar estas limitaciones, se han comenzado a utilizar otras técni-
cas de generación de modelos, en general más flexibles, y que por tanto se 
permiten modelar relaciones no lineales y variables dependientes. Las más 
comunes son las redes neuronales, como muestra la cantidad de estudios pre-
sentados recientemente (por ejemplo, [10]). 

Estos modelos no hacen suposiciones a priori sobre las relaciones entre va-
riables. Por el contrario, pueden adaptarse y “descubrir” las interacciones exis-
tentes entre las series de datos. Como contrapartida, deben utilizarse con pre-
caución, para evitar el efecto denominado “sobreajuste”, por el cual el modelo 
aproxima muy bien los datos de entrenamiento (los utilizados para ajustar los 
parámetros del modelo), pero no tienen buena capacidad de generalización. Es 
decir, el error de predicción aumenta considerablemente al aplicarlo a un caso 
diferente de los de entrenamiento. Un procedimiento aplicable siempre, de 
gran utilidad para evitar este problema, consiste en reservar una parte de los 
datos disponibles (datos de test), que no se utilizan para ajustar los paráme-
tros del modelo. Al contrario, se compara la predicción del modelo en el perio-
do de test con los valores observados. Un aumento del error en este periodo 
con respecto al registrado en los datos de entrenamiento denota sobreajuste. 

En el curso de la investigación, se ha realizado un estudio comparativo en-
tre algunas de estas herramientas, enmarcadas en el campo de la inteligencia 
artificial [11]. Los resultados muestran que las redes neuronales ofrecen en 
general mayor precisión que el modelo HST, y también que otras técnicas 
permiten obtener una precisión incluso mayor en muchos casos. 

La idea es que modelos más precisos permitirán definir con mayor preci-
sión los umbrales de comportamiento normal, y por tanto unos niveles de avi-
so más realistas. 

4.2. IMPLEMENTACIÓN 
Se ha desarrollado una aplicación que permite generar modelos de predic-

ción basados en distintas técnicas (incluso las convencionales y las redes neu-
ronales), con diferentes valores de los parámetros que las definen.  

Como ejemplo, para construir una red neuronal deben definirse el número 
de neuronas y los parámetros que controlan el proceso entrenamiento. La 
aplicación permite ajustar un modelo de este tipo, bien con unos parámetros 
por defecto (que suelen funcionar aceptablemente bien en el caso general), pa-
ra que el usuario no iniciado pueda hacer pruebas, bien particularizándolos,  
para comprobar cómo afectan los cambios a la precisión del modelo.  

Se incluye también documentación explicativa, en forma resumida, sobre 
a) las bases de funcionamiento del modelo, b) criterios para la definición de los 



parámetros, y c) enlaces a textos explicativos de la base matemática de cada 
herramienta. 

 

 

 

 

 

 

 

 

 

 

Figura 4. Aplicación para el cálculo de un modelo de predicción basado en bosques 
aleatorios. Los controles de la izquierda permiten particularizar la cantidad de datos 
utilizados para el entrenamiento, y los parámetros que definen el modelo (en este caso, 
el número de árboles y el parámetro “ntry”). Se incluye también un enlace a una do-
cumentación resumida, con criterios a seguir y enlaces a textos clave para entender la 
base matemática y la aplicación de cada modelo. En el ejemplo mostrado se observa 
sobreajuste del modelo, como indica el aumento claro del error entre los datos de en-
trenamiento (a la izquierda de la línea vertical) y los de test (no empleados para el 
ajuste del modelo). 

Como en el ejemplo anterior, estas aplicaciones se han diseñado para ser 
accesibles a través de internet, desde cualquier dispositivo. La figura 4 mues-
tra una imagen de la herramienta para la generación de modelos basados en 
bosques aleatorios [12]. 

5. CONCLUSIONES Y LÍNEAS DE INVESTIGACIÓN FUTURAS 
Existen multitud de técnicas desarrolladas en diversos campos, general-

mente alejados de la ingeniería civil, que han demostrado su utilidad para la 
interpretación y predicción del comportamiento de sistemas complejos. Su 
aplicación a sistemas de ingeniería civil ha sido relativamente escasa, muy 
escasa en el caso de las presas. 

Es necesario considerar la complejidad del comportamiento del conjunto 
presa-terreno, y admitir las posibilidades que ofrecen los métodos no conven-
cionales para comprender mejor la respuesta de la estructura. Se trata de 
combinar las técnicas habituales con otras nuevas en el campo de la ingenie-
ría de presas, pero ya maduras gracias a su aplicación a diversos ámbitos del 
conocimiento.  

Las posibilidades que ofrecen las técnicas de inteligencia artificial son 
enormes. Algunas de las que se han identificado, y que se prevé explorar en el 
futuro, son las siguientes: 



• Selección de variables flexible: en algunos casos, se añaden al mode-
lo variables derivadas de las exteriores, como por ejemplo la media 
móvil del nivel de embalse, o su velocidad de variación [13], en base 
a la intuición del modelador. Las herramientas de inteligencia artifi-
cial permiten seleccionar de forma automática las variables más úti-
les, y descartar las poco importantes [10]. 

• Generación de modelos no causales: pueden utilizarse algunas de las 
variables de respuesta de la presa para predecir otras (por ejemplo, 
calcular el movimiento en un péndulo a partir de otro). Ello puede 
reducir la utilidad del modelo para explicar el comportamiento, pero 
aumentar su aptitud para detectar determinadas anomalías. 

• Modelos autorregresivos: son los que basan la predicción en el valor 
registrado en instantes de tiempo previos. También se llaman mode-
los de corto plazo, porque suelen utilizarse para predicción “paso a 
paso”. Su precisión disminuye en general para predecir a largo plazo, 
porque el error se propaga hacia adelante en el tiempo. Pueden ser 
útiles sin embargo en combinación con otro tipo de modelos. 

• Interpretación del comportamiento de la presa. Muchos de estos mo-
delos permiten calcular un índice de importancia de las variables, 
que normalmente se basa en criterios empíricos (miden cuánto au-
menta el error al eliminar cada una de las variables por separado). 
La interpretación de estos resultados no es tan directa como la de un 
modelo lineal, donde los coeficientes correspondientes a cada varia-
ble pueden compararse directamente y representan la variación de la 
variable respuesta al modificarse cada una de las variables predicto-
ras. Sin embargo, pueden ser de gran utilidad como apoyo para el 
encargado de seguridad de la presa, en combinación con su conoci-
miento previo de la estructura y su comportamiento. 

Finalmente hay que destacar dos ideas fundamentales:  

1. la inspección visual es irreemplazable y debe siempre formar parte 
de un sistema de auscultación 

2. la aplicación de estas herramientas y la interpretación de sus resul-
tados debe llevarse a cabo por profesionales con formación y expe-
riencia suficientes.  
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1. Introducción 
El control de la seguridad de presas es un aspecto fundamental de su explotación. El 
elemento clave es el sistema de auscultación, considerado como el conjunto de a) los 
aparatos instalados en la presa que registran determinadas variables, b) el sistema de 
transmisión de datos y c) una metodología para evaluar el estado de seguridad en función de 
los datos registrados. En la práctica, el sistema debe determinar si los datos registrados se 
corresponden con una situación normal, o si existe un riesgo de avería. 

Para ello, se seleccionan los aparatos más representativos del comportamiento general de la 
estructura, y se definen unos umbrales que se corresponden con el estado de seguridad de 
la presa (situación normal o algún grado de emergencia), que se incluyen en el Plan de 
Emergencia de la Presa como indicadores cuantitativos del estado de seguridad (Ministerio 
de Medio Ambiente 2001). 

La propia Guía Técnica para Elaboración de Planes de Emergencia de Presas incluye una 
clasificación de los métodos que pueden emplearse para definir los indicadores, señalando 
algunos de los pros y los contras de cada uno de ellos: 

• Estadísticos, que establecen la relación entre las variables externas e internas a 
partir de las series de observaciones reales. Solo pueden aplicarse a presas en 
servicio “durante un periodo largo de tiempo”. 

• Deterministas, que se basan en la modelización del comportamiento de la presa 
(típicamente con elementos finitos). Pueden aplicarse a presas de nueva 
construcción, pero solo si es posible “caracterizar con fiabilidad la realidad 
estructural de la presa y su cimiento y su comportamiento y, por tanto, los 
parámetros que lo condicionan”. 
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• Mixtos, que combinan los dos anteriores. 

La Guía recomienda también (y los autores lo suscriben) aplicar el juicio ingenieril antes de 
declarar cualquier escenario de emergencia. Sin embargo, del mismo modo establece que 
“cualquier cambio significativo que pueda tener un efecto negativo sobre la seguridad y no 
sea explicable directamente en función de otros parámetros (nivel de embalse, temperatura, 
etc.) debe considerarse causa suficiente para la declaración del Escenario 0 de control de la 
seguridad”. 

En la práctica, es relativamente frecuente que ocurran errores de lectura que producen 
registros fuera de rango de situación normal. El responsable de explotación puede aplicar 
su juicio para establecer que dicha medición no constituye una anomalía y por tanto no 
requiere la declaración de un escenario de emergencia. Sin embargo, sería útil disponer de 
herramientas capaces de ayudar a tomar una decisión que en algunos casos puede ser 
comprometida. 

Es difícil establecer umbrales a partir de modelos deterministas, porque la información 
disponible de la presa y el cimiento es muchas veces insuficiente para obtener resultados 
precisos. Por ello los indicadores cuantitativos suelen basarse en modelos estadísticos. Las 
herramientas de este tipo que se utilizan más habitualmente son relativamente simples, 
limitándose frecuentemente a la regresión lineal múltiple. El modelo más utilizado es el 
Hydrostatic-Season-Time (HST), basado en una combinación lineal del nivel de embalse, la 
estación del año y el tiempo de vida de la presa. En ocasiones se añaden variables 
derivadas de las registradas para aumentar la complejidad del modelo y hacerlo más 
flexible con el objetivo de aumentar la precisión de las predicciones. 

En otros campos de la ciencia en que el volumen de datos disponible es mucho mayor, se 
han desarrollado herramientas para su tratamiento y para la generación de modelos de 
predicción. Algunas de ellas, como las redes neuronales, ya han sido aplicadas al caso de la 
auscultación de presas (Santillán et al. 2014, Mata, 2011, Simon et al. 2013, Salazar et al., 
2015a, Salazar et al., 2015b) con resultados prometedores. 

La aplicación de estas técnicas puede ayudar a mejorar la precisión de los modelos de 
predicción, y a entender mejor el comportamiento de la presa (Toledo et al., 2013). Un 
modelo más preciso puede ayudar además a definir umbrales de emergencia más fiables. 

El principal inconveniente de estos modelos es que son más difíciles de interpretar que el 
HST. Mientras que en éste puede extraerse directamente la contribución de cada una de 
las acciones (nivel de embalse, temperatura, tiempo) en la respuesta de la presa, en otros 
modelos más complejos los efectos no son aditivos, suelen ser no-lineales, y basarse en un 
conjunto de variables mayor. Todo ello ha provocado que sean calificados con frecuencia 
como modelos de “caja negra” (p.e. Olden y Jackson, 2002). La mayor parte de los trabajos 
publicados sobre la aplicación de estas técnicas en seguridad de presas se limitan a 
evaluar el error de predicción. No se interpreta el modelo obtenido y por tanto no se 
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pueden extraer conclusiones sobre el estado de seguridad de la presa. Como excepción, 
cabe citar los trabajos de Santillán et al (2014) y Mata (2011). 

Nos encontramos por tanto ante una disyuntiva: el modelo HST es ampliamente conocido 
y utilizado y fácilmente interpretable. Sin embargo, se basa en unas hipótesis que no son 
ciertas, como que la temperatura es independiente del nivel de embalse (Tatin et al., 
2013), y su precisión es limitada. Por otra parte, se dispone de unas técnicas más flexibles 
y precisas, pero más difíciles de implementar y analizar. 

Ante esta situación, el presente trabajo tiene por objetivo proponer un método para 
interpretar un modelo de predicción del comportamiento de presas basado en bosques 
aleatorios (Breiman, 2001). El resultado de dicha interpretación se compara con el 
obtenido con el método HST. 

2. Metodología 
2.1. Caso de estudio 

Se dispone de datos de auscultación de la presa de La Baells en el periodo 1.980-2.008.  La 
figura 1 contiene el alzado esquemático y la sección de la presa, con la situación de algunos 
de los aparatos de auscultación. La descripción completa de los datos disponibles puede 
encontrarse en (Salazar et al., 2015a). 

 
Figura 1. Alzado esquemático y sección de la presa de La Baells. Sobre el primero se señala la 

situación de algunos de los aparatos de auscultación.  

 
Figura 2. Nivel de embalse y temperatura media diaria en el periodo de análisis  
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Para el presente análisis se han seleccionado los datos de nivel de embalse y temperatura, 
para analizar los desplazamientos radiales registrados en el péndulo P1D1 (Figura 1). Se 
considera el periodo 1.980 – 2.000, durante el que se dispone de registros con frecuencia 
aproximadamente semanal (figura 2). 

2.2. Método HST 

La fórmula más habitual del modelo HST, que es la que se ha utilizado en este trabajo, es: 
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donde f̂ es la función que define el comportamiento de la variable objetivo que se pretende 
evaluar, h es el nivel de embalse, t es el tiempo en días desde la puesta en carga de la presa, 
y s se calcula como: 

 π2
25,365

⋅=
ds  [2] 

siendo d el número de días transcurridos desde el 1 de enero del año correspondiente. 

Para identificar el efecto de cada una de las variables exteriores (temperatura, carga 
hidrostática y tiempo), basta con extraer los términos de [1] que dependen de cada una de 
ellas y dibujar su contribución parcial a la variable objetivo. Es decir, dibujar por separado 
f(h), f(s) y f(t). 

2.3. Bosques aleatorios 

Los bosques aleatorios (BA) pertenecen a un tipo de modelos basados en datos 
denominados “no paramétricos”. El motivo es que no se hace ninguna suposición a priori 
sobre el tipo de relación entre las variables exteriores (en nuestro caso, nivel, temperatura y 
tiempo) y la respuesta del sistema (desplazamiento radial). Esta característica contrasta con 
el método HST, en el que debe fijarse por ejemplo el orden del polinomio de la variable nivel 
de embalse, así como el tipo de función dependiente del tiempo. 

Los BA aproximan el valor de la variable objetivo a partir del promedio de la predicción de un 
gran número (generalmente varios centenares) de modelos sencillos del tipo árbol de 
decisión. Son por tanto un modelo de conjunto. La descripción de la base teórica puede 
encontrarse en diversas fuentes (p.e. Hastie et al., 2009), así como en el artículo seminal de 
Breiman (2001). Se han publicado ejemplos de aplicación a seguridad de presas (Salazar et 
al, 2013).  

Aunque su interpretación no es fácil, existen herramientas que permiten extraer 
información útil sobre el funcionamiento del sistema. La herramienta principal de 
interpretación de los modelos basados en BA es el índice de importancia de las variables. 
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Una vez construido el modelo, se permuta por separado cada una de las variables 
predictoras y se calcula el incremento en el error de predicción que supone. Se basa en la 
idea de que si una variable no afecta a la respuesta, la precisión dependerá poco de si se 
utiliza la serie original o la permutada. Al revés, el error aumenta más cuanto mayor es la 
importancia de la variable permutada. Esta medida se puede utilizar para seleccionar 
variables, si bien se ha demostrado que tiene sesgo en determinadas circunstancias 
(Strobl et al, 2008). 

También puede extraerse información del modelo mediante los gráficos de dependencia 
parcial (Friedman 2000). En estos gráficos, para cada variable predictora, se selecciona un 
conjunto de valores distribuidos uniformemente a lo largo de su rango. Para cada uno de 
esos valores, se calcula la media de la predicción del modelo considerando los valores 
reales del resto de predictoras: 

 ∑ =
=

n

i iCxxf
n

xf
1

),(1)(ˆ  [3] 

donde x es la variable cuyo efecto se quiere evaluar, y xiC representan el resto de variables. 
Por ejemplo, si x es el nivel de embalse, se define un conjunto de valores equiespaciados a 
lo largo de la carrera de embalse x1, …xp. Se sustituye la serie original del nivel de embalse 
por un valor constante x=x1. Se calcula la predicción del modelo manteniendo el resto de 
variables con su valor original (xiC), y se extrae la media de esas predicciones. Se repite el 
proceso para cada uno de los valores de x=xp. Con ello se obtiene una serie de puntos que 
reflejan el efecto promedio de la variación del nivel de embalse en la predicción del 
modelo. 

Los BA son la base de los denominados “quantile regression forests” (Meinshausen 2006), 
que permiten calcular la función de densidad de la variable objetivo, a partir de la cual 
pueden definirse intervalos de confianza de la predicción, que pueden ser útiles para 
definir umbrales de emergencia.  

3. Resultados y discusión 
3.1. Interpretación del comportamiento 

La figura 3 contiene la contribución parcial al desplazamiento radial P1DR1 del tiempo, la 
temperatura y la carga hidrostática según el modelo HST. Se observa la relación no-lineal 
con el nivel de embalse, con desplazamiento hacia aguas abajo mayor con embalse lleno 
(sentido decreciente del eje y). Lo mismo ocurre en los meses fríos, como se comprueba 
en el gráfico parcial de la temperatura. Por último, el modelo identifica una deriva 
temporal hacia aguas abajo sensiblemente lineal de aproximadamente 0,2 mm/año. 
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Figura 3. Contribución parcial de las variables exteriores al desplazamiento radial según el modelo 
HST. 

Los gráficos de dependencia parcial que se obtienen del modelo BA se incluyen en la 
figura 4. Se observan tendencias muy similares en cuanto al efecto de la temperatura y el 
nivel de embalse. Sin embargo, la influencia del tiempo es cualitativamente diferente. En 
este caso, se registra una variación brusca sobre el año 1992, y un comportamiento 
sensiblemente constante entre ese momento y el año 2000. 
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Figura 4. Gráficos de dependencia parcial del desplazamiento radial en P1DR1 (datos registrados) 
calculados con el modelo BA 

La interpretación de estos resultados y su implicación con respecto del comportamiento 
de la presa son muy importantes y deben hacerse a partir de la máxima información sobre 
las incidencias en la estructura y en su sistema de auscultación.  

Ya se ha mencionado que en el modelo HST debe definirse a priori la forma de la función 
dependiente del tiempo (en este caso, se ha optado por una combinación de exponencial 
negativa y lineal), mientras que en el modelo BA puede tener en principio cualquier forma. 
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Por lo tanto, podría pensarse que el comportamiento real de la presa es el que muestra el 
modelo BA, y que el resultado del HST se debe a la restricción impuesta a priori. En ese 
caso, la curva de contribución parcial del tiempo de la figura 3 sería el mejor ajuste del 
modelo HST al comportamiento real (escalón) que muestra la figura 4. 

No obstante, cabe cuestionarse esta conclusión, ya que los gráficos de dependencia 
parcial no son equivalentes a los de la figura 3. Además, se da la circunstancia de que el 
nivel de embalse promedio en el periodo 1992-2000 fue sensiblemente mayor que en el 
periodo 1980-1992 (figura 2). Esta podría ser la causa del escalón registrado en la figura 4, 
que denota un desplazamiento mayor hacia aguas abajo en el periodo más reciente 
(coherente con el mayor nivel de embalse). 

Para comprobar esta circunstancia, se ha realizado un experimento adicional. Se ha 
generado una serie de datos modificada del desplazamiento en P1DR1. Se ha obtenido 
introduciendo los valores reales de tiempo y nivel en [1], con los coeficientes calculados 
durante el ajuste del modelo HST, eliminando los términos dependientes del tiempo. Se 
obtiene por tanto una serie artificial, que representa cualitativamente la contribución del 
nivel de embalse y la temperatura, pero que es independiente del tiempo. Sí mantiene la 
particularidad de que la carga hidrostática en el periodo más reciente es mayor que en el 
periodo inicial. Se ha añadido al resultado un término aleatorio de valor medio nulo y 
desviación típica igual a 0,5 mm. 

Se ha ajustado un modelo basado en BA para ajustar la serie artificial, y se incluyen los 
gráficos de dependencia parcial en las figura 5. 
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Figura 5. Gráficos de dependencia parcial del desplazamiento radial P1DR1HS (serie generada 
artificialmente eliminando la influencia del tiempo), calculados con el modelo BA 

Se comprueba que la respuesta es prácticamente independiente del tiempo. Estos 
resultados confirman que el escalón registrado en el gráfico de dependencia parcial del 
desplazamiento con respecto del tiempo (figura 4) no se debe a que el nivel de embalse 
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promedio es mayor en el periodo 1992-2000. Ello demuestra la utilidad de los gráficos de 
dependencia parcial de modelos BA para interpretar el comportamiento de presas.  

3.2. Definición de umbrales 

La figura 6 muestra la predicción del modelo BA para el año 2000 con los datos reales 
registrados de nivel y temperatura (línea), junto con el rango del 95% de la función de 
densidad en cada punto (zona sombreada). Los datos registrados se representan por 
puntos. Se observa que los  valores caen dentro del umbral así definido.   

Si bien la declaración de un escenario de emergencia debe corresponder al responsable de 
seguridad de la presa, este tipo de gráficos pueden ser útiles para tal efecto. En particular, 
podría definirse una alerta que se activase al registrarse un valor fuera del rango de 
comportamiento normal del 95%.  

Se trata de una prueba preliminar, pero muestra que el rango de confianza de la 
predicción del modelo varía dependiendo del valor de las variables exteriores. 

 

Figura 6. Predicción del modelo BA (línea discontinua) y su rango de confianza del 95% (zona 
sombreada). Los datos registrados se muestran con círculos.  

4. Resumen y conclusiones 
Los BA tienen gran flexibilidad para aproximar relaciones no lineales entre variables 
predictoras y respuesta. Aunque su complejidad dificulta su interpretación, los gráficos de 
dependencia parcial son una herramienta útil para identificar cambios en el 
comportamiento del sistema.  

Su flexibilidad permite capturar variaciones de comportamiento de cualquier tipo. Esto 
supone una gran ventaja con respecto del modelo HST, en el que debe definirse a priori el 
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tipo de influencia entre cada variable predictora y la respuesta. El ejemplo presentado 
ilustra la ventaja que supone en la práctica. El análisis del modelo HST podría llevar a 
concluir que existe una deriva de la presa que se traduce en un desplazamiento hacia 
aguas abajo lineal con el tiempo y que dicha deriva no muestra síntomas de atenuación. 
Por el contrario, el modelo BA muestra que la variación temporal se produjo bruscamente, 
y que se ha estabilizado en los últimos años. 

Otra conclusión importante es la posibilidad de asociar los umbrales de emergencia con 
funciones de densidad dependientes de la incertidumbre de las variables predictoras. 
Sobre esta línea se mantiene una investigación en marcha que pretende establecer 
criterios para la definición de dichos umbrales mediante funciones de probabilidad 
asociadas al modelo de comportamiento de la presa. 

Agradecimientos 

El trabajo ha sido financiado por el Ministerio de Economía y Competitividad de España 
(MINECO), a través de los proyectos iComplex (IPT-2012-0813-390000) y AIDA (BIA2013-
49018-C2-1-R y BIA2013- 49018-C2-2-R). 

Los autores desean expresar su agradecimiento a Carlos Barbero, de la Agencia Catalana 
del Agua, por facilitar los datos de auscultación de la presa de La Baells. 

Referencias 

Breiman, L. (2001). Random forests, Machine learning 45(1) (2001) 05-32. 

Friedman, J.H. (2000). Greedy function approximation: a gradient boosting machine. 
Annals of Statistics, 29, 1189-1232. 

Hastie, T., Tibshirani, R. y Friedman, J. 2009. The elements of statistical learning - Data 
mining, Inference and Prediction. Springer, 2ª edición. 

Olden, J. D., Jackson, D. A. (2002). Illuminating the “black box”: a randomization approach 
for understanding variable contributions in artificial neural networks. Ecol. Model. 154(1), 
135-150. 

Mata, J. (2011). Interpretation of concrete dam behaviour with artificial neural network 
and multiple linear regression models. Engineering Structures, 33(3), 903-910. 

Meinshausen, N. (2006). Quantile regression forests. The Journal of Machine Learning 
Research, 7, 983-999. 

Ministerio de Medio Ambiente. 2001. Guía Técnica para Elaboración de Planes de 
Emergencia de Presas.  



 
 

10 

Salazar, F., Oñate, E. y Toledo, M.Á. (2013). Posibilidades de la inteligencia artificial en el 
análisis de auscultación de presas. III Jornadas de Ingeniería del Agua. 

Salazar, F., Toledo, M. A., Oñate, E., & Morán, R. (2015a). An empirical comparison of 
machine learning techniques for dam behaviour modelling. Structural Safety, 56, 9-17. 

Salazar, F., Morán, R., Toledo, M.Á., Oñate, E. (2015b). Data-based models for the 
prediction of dam behaviour. A review and some methodological considerations. Archives 
of Computational Methods in Engineering. Doi: 10.1007/s11831-015-9157-9. 

Santillán, D., Fraile-Ardanuy, J.,  Toledo, M.Á. (2014). Predicción de lecturas de aforos de 
filtraciones de presas bóveda mediante redes neuronales artificiales. Tecnología y Ciencias 
del Agua. Vol. V, núm. 3, mayo-junio de 2014, pp. 81-96. 

Strobl, C., Boulesteix, A.L., Kneib, T., Augustion, T, Zeileis, A. (2008). Conditional variable 
importance for random forests. BMC Bioinformatics 2008, 9:307 

Tatin, M., Briffaut, M., Dufour, F., Simon, A., Fabre, J. (2013). Thermal displacements of 
concrete dams: Finite element and statistical modelling, 9th ICOLD European Club 
Symposium, Venice, Italy, 2013. 

Toledo, M.Á., Salazar, F., Morera, L., Roa, A., Santillán, D. y Morán, R. 2013. Interpretación 
de los datos de auscultación de presas por métodos no convencionales. Jornada técnica 
sobre avances en investigación aplicada en seguridad hidráulica de presas. Madrid, junio 
de 2013. http://oa.upm.es/30175/1/INVE_MEM_2013_150013.pdf 



B.4 A methodology for dam safety evaluation and anomaly

detection based on boosted regression trees

Title: A methodology for dam safety evaluation and anomaly detection based on boosted

regression trees

First Author: Fernando Salazar González. CIMNE - International Center for Numerical

Methods in Engineering
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Abstract 
Many countries are implementing new dam safety regulations that often include more 
restrictive standards. This, together with the increasing average age of dams, results in a 
greater need for dam control and maintenance works. The advances in information and 
communications technologies improved the performance of dam monitoring systems, so a 
large amount of information on the dam behaviour can be collected. This has led to the use of 
more powerful tools for its analysis, many of which were first developed in the field of 
machine learning (e. g. neural networks). They offer some advantages over the conventional 
statistical methods. However, their capacity for early detection of anomalies has seldom been 
studied. As a result, they are far from being fully accepted by practitioners, whose analyses 
are often restricted to the interpretation of simple plots of time series data, together with 
basic statistical models. The present work describes a methodology for anomaly detection in 
dam behaviour, with the following features: a) The prediction model is based on boosted 
regression trees (BRTs). b) Causal and auto-regressive models are combined to detect 
different types of anomalies. c) It is checked whether the values of the external variables fall 
within the range of the training data. The performance of the proposed methodology was 
assessed through its application to a test case corresponding to an actual 100-m height arch 
dam, in operation since 1980. Artificial data were generated by means of a finite element 
model. Different anomalies were later added in order to test the anomaly detection 
capability. The method can be applied to other response variables and dam typologies, due to 
the great flexibility of BRTs, which automatically select the most relevant inputs. 

 
1 INTRODUCTION 

The advances in information and communication technologies have improved the 
performance of dam monitoring systems in terms of accuracy, reliability and reading 
frequency. This results in more comprehensive information about the behaviour of the 
structure [1]. 

The increase in the amount of information available led to the application of advanced 
tools for data analysis, most of which provide from the machine learning community, e.g. 
neural networks [2], support vector machines [3], the adaptive neuro-fuzzy inference systems 
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(ANFIS) [4], among others [5], [6]. 
Nonetheless, these tools have not been introduced among practitioners, who typically 

employ graphical data exploration [7], together with simple statistical models [1].  
The vast majority of the examples of application of advanced tools focus on the 

development of a behaviour model that predicts the value of a given response variable (e. g. 
radial displacement). The prediction is compared with the actually observed data and some 
error index is extracted. In many cases the results are compared with those obtained by 
conventional statistical methods (e.g. [2]). 

These advanced tools offer some advantages in terms of greater accuracy, flexibility, or 
ability to interpret the dam behaviour [8]. However, an accurate predictive model is just one 
of the necessary ingredients of an anomaly detection system. Some criterion needs to be 
developed to determine whether a given discrepancy between prediction and observation 
shall be considered as anomalous. This aspect was seldom considered, with a few exceptions 
for particular cases [9], [10], [11], which nonetheless were evaluated over a short validation 
period. Jung et al [10] and Mata et al [9] also generated artificial data with numerical models 
representative of abnormal situations. 

In these work, a similar procedure is employed: a predictive model is built, and prediction 
intervals are derived from the standard deviation of the prediction error. This is the main 
ingredient of a methodology for anomaly detection in dam behaviour, with the following 
innovative features: 

• The predictive model is based on boosted regression tress (BRTs from now on). 
This tool offered higher accuracy than other conventional and advanced tools in 
previous works [6]. 

• Both causal and auto-regressive models are assessed and the correspondent 
efficiency is compared in terms of anomaly detection capability. 

• Artificial data are taken as reference, obtained with a numerical finite element (FE) 
model. It represents an actual dam currently in operation. The numerical results 
were compared to monitoring data to verify that they represent the actual dam 
behaviour. 

• The value of the external variables was compared to the range of training data: 
during model application, abnormal values correspondent to extraordinary loads 
(e.g. reservoir level) are considered as due to lack of training data. This contributes 
to reduce the amount of false positives. 

2 METHODS 

2.1 Boosted regression trees 
BRT models are built by combining two algorithms: a set of models are fitted by means of 

simple decision trees [12], whose output is combined to compute the overall prediction using 
boosting [13]. This tool was employed in previous works [8], where its main features were 
described. A more comprehensive introduction can be found in [14]. 

The main properties of BRTs are: 
• They are robust against outliers. 
• They require little data pre-processing. 
• They can handle numerical and categorical predictors. 
• They are appropriate to model non-lineal relations, as well as interaction among 

predictors. 
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All the calculations were performed in the R environment [15]. 

2.2. Prediction intervals 
As mentioned above, a method for anomaly detection requires determining which 

magnitude of the discrepancy between prediction and observation is considered abnormal. In 
this work, the density function of error was computed and the normal interval defined as  

[y ̂+e̅+2·sde, y ̂+e̅-2·sde] (1) 

where y ̂ is the model prediction, e̅ is the mean error and sde is the error standard deviation. 
If the error density function follows a normal distribution, this margin contains 95% of the 
normal values. This criterion is heuristic, and was determined after some preliminary tests, 
considering both the true anomalies detected (true positives) and the normal situations 
considered abnormal (false positives). 

However, a more relevant issue is the proper computation of the model prediction error. 
Since BRTs are non-parametric and typically feature a large number of parameters, they are 
susceptible to over fit the training data. It is well known that the training prediction error for 
machine learning tools results in an optimistic estimate of the actual model generalisation 
capability.  

Cross validation is a conventional method to overcome this drawback. However, it cannot 
be directly applied to dam monitoring data, since they are time series: the training period 
shall be precedent to the validation interval. Moreover, the dam and its foundation feature 
behaviour changes over time in the general case. 

We propose a method based on the hold-out cross validation described by Arlot and 
Celisse [16] for non-stationary time-series data. It comprises an iterative procedure: 

• Take a minimum training period of 5 years. Build a BRT model, and compute the 
prediction errors for the sixth year. 

• Build a new BRT model with 5+1 years of training data. Compute prediction 
errors for 7th year, and aggregate them to those obtained in the previous step. 

• Repeat step 2 until a model is built with all the available data but the most recent 
year, and aggregate the prediction errors.  

• Compute the density function of the aggregated-error and its statistics (e̅ and sde). 
They are employed to define the interval for normal behaviour with Eq. (1). 

• Build a BRT model with all the available data. Generate predictions and normal 
intervals for new (validation) data and compare to observations for anomaly 
detection.  

2.3. Training range verification 
Machine learning models typically produce highly inaccurate results when extrapolating, 

i.e., when new data falls outside the range of the training data set. In the case of dam 
monitoring, this situation corresponds with external loads above (or below) the maximum 
(minimum) value registered during its service life. Since dam response depends on several 
actions, also a combination of them may result in an “out-of-range” situation, even if none of 
the values are out of range when considered separately. To account for this issue, we chose 
the two principal environmental loads, i.e., hydrostatic (reservoir level) and thermal (air 
temperature), and build a two-dimensional density function via kernel density estimation 
[17]. The training sample with the lower density was computed, and its correspondent iso-
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line plotted. New inputs falling outside this line are classified as out-of-range. In practice, 
they are not considered as anomalies even though the deviation between prediction and 
observation fell outside the normal interval. Figure 1 is an example of the density plots 
generated, with the training data, the iso-line and the validation data, part of which are out of 
range according to the described criterion.   

 
Figure 1: Example of density function for the main environmental loads. The circles represent the training set, 

and the red crosses the validation set. The dotted line is the iso-line with the lower density for the training set. It 
should be noted that some of the validation data are considered as out of range because they fall in low-density 
areas, even though they do not correspond to extraordinary high (or low) hydrostatic load (or air temperature). 

2.4 Case study 
La Baells dam is a double-curvature arch dam located in the Llobregat river, in the 

Barcelona region (Spain). The crest length is 403 m, whereas the maximum height above 
foundation is 102 m. Monitoring data were provided by the Catalan Water Agency for the 
period 1981-2008. These data correspond both to environmental and response variables. In 
this work, the air temperature and the reservoir level time series were considered as inputs to 
a finite element (FE) model. The results of this model in terms of radial displacements at the 
location of the pendulums were extracted and compared to the actual measurements. The 
objective was to check that the FE model could provide realistic data to generate reference 
time series of dam behaviour. This procedure allows obtaining data corresponding to the 
“ground truth”, i.e., input-output time series without anomalies.  

Time series data for hydrostatic load and air temperature were available for the period 
1980-2008. Some derived variables were computed and considered as inputs, as described in 
previous works [5], [6] and summarised in Table 1. These are the inputs for the causal 
models. 

The radial displacements measured at eight locations within the dam body were 
considered as outputs (Figure 2). 

Moreover, a non-causal model was built for each output, taking as inputs both the 
environmental variables and all the outputs except that to be predicted in each case. Also the 
lagged output variables were included as inputs. This is, to predict the radial displacement 
R(tk,xi) (at time tk, location xi), the following variables were added to those considered for the 
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causal model: 
• R(tk-1, xi)  
• R(tk-2, xi)  
• R(tk, xj; j≠i) 

• R(tk-1, xj; j≠i) 

• R(tk-2, xj; j≠i) 
Hence, both a causal and a non-causal model are built for each output variable. 
 

Id Type Period (days) 
Level Hydrostatic load-original - 

Lev007 Hydrostatic load-moving average 7 
Lev014 Hydrostatic load-moving average 14 
Lev030 Hydrostatic load-moving average 30 
Lev060 Hydrostatic load-moving average 60 
Lev090 Hydrostatic load-moving average 90 
Lev180 Hydrostatic load-moving average 180 

Tair Air Temperature-original - 
Tair007 Air Temperature-moving average 7 
Tair014 Air Temperature-moving average 14 
Tair030 Air Temperature-moving average 30 
Tair060 Air Temperature-moving average 60 
Tair090 Air Temperature-moving average 90 
Tair180 Air Temperature-moving average 180 
NDay Time - 
Month Season - 

Table 1: External variables considered 

 

 
Figure 2: Location of the devices analysed within the dam body (view from downstream) 

 

2.5 Anomalies 
The results of the numerical model were artificially modified to simulate anomalies of two 

types and variable magnitude, which were introduced at a certain date: 
• Offset, equivalent to adding a constant value (0.5, 1.0 or 1.5 mm) to the FEM 

model result. 
• Incremental drift, where the added value is variable, growing linearly along time 

(0.5, 1.0 or 1.5 mm/year). 
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The abnormal period started at some random date between January 1st 1986 (5 years of 
minimum training period) and 2007 September 10th (one year before the end of the available 
period). 

These criteria were applied to generate 1,000 abnormal time series, each one with random 
values of a) the target variable (among those depicted in Figure 2), b) the type and magnitude 
of anomaly, and c) the initial date of the abnormal period.  

Each test case was presented both to the causal and the non-causal models. The time lapse 
since the initiation of the abnormal behaviour to the first observation identified as anomaly 
by each model was registered as “detection time”. The test period was limited to two years of 
abnormal behaviour. If the correspondent model did not identify any observation as abnormal 
during that period, the detection time was set to 730 days (2 years) as regards results analysis. 

Also the amount of false positives (regular values considered anomalous) were computed 
for each model and output. It should be reminded that the out-of-range instances (according 
to the criterion described in section 2.3) were not considered as anomalies. 

3. RESULTS AND DISCUSSION 
Figure 3 shows an example of application of the methodology. The vertical line was 

plotted at the initial date of anomaly. The shaded area represents the normal range (Eq. 1), 
and the anomalous values are depicted with red asterisks. The blue hollow circles represent 
out-of-range input data. 

 
Figure 3: Anomaly detection. Example of application. Blue hollow circles depict out-of-range values. Red 

asterisks show observations out of the normal area (shaded). The vertical line is located at the starting of the 
abnormal interval. 

An increasing deviation between observations and predictions can be clearly identified, 
correspondent to the artificial anomaly introduced. The model is re-trained at the beginning 
of each year, and the observations in the precedent year are added to the training data set. In 
this case, the model considers them as normal response, and partially adapts to the abnormal 
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behaviour. This is the reason why the observations in January 2006 fall within the normal 
interval. However, the anomalous behaviour is again detected in February 2006. In practice, 
the re-training at January 2006 should be modified accounting for the abnormal behaviour 
previously identified. 

Table 2 shows some statistics of the performance of both models across the 2,000 cases 
analysed. The non-causal model outperforms the causal one for all the indicators considered. 

 
Model Undetected anomalies  Detection time. 

Mean/median (days) 
False positives 

 (average per year) 
Causal 20% 276/186 0.85 

Non causal 10% 163/72 0.56 

Table 2: Results of the performance of causal and non-causal models 

 
Figure 4: Detection time per type of anomaly, predictive model and magnitude. The non-causal model performs 

better, especially for the “offset” type.  

The detection time per type of model and anomaly is depicted in Figure 3. It is lower for 
the non-causal model in all cases. As expected, the anomalies with lower magnitude are 
harder to detect, which results in a higher detection time (it should be reminded that the 
detection time is limited to 730 days). Also, the “incremental drift” anomalies require a 
longer time to be detected than the “offset”. 

Figure 4 shows the results per type of model and anomaly, as well as per year of initiation 
of the abnormal behaviour. The latter factor determines the size of the training set, which in 
turn affects the model accuracy and its ability to detect anomalies.  
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For the “offset” anomaly, the performance of both models neatly improves for later date of 
anomaly initiation. This effect is remarkable for the non-causal model, whose median 
detection time is close to zero for anomalies starting after 1995. The tendency is less clear for 
the “incremental drift” anomaly. 

 
Figure 5: Detection time per year of anomaly initiation, type of model and anomaly. The performance is better 
along time for both models and “offset” anomalies, whereas the tendency is less clear for “incremental drift”. 

9 SUMMARY, CONCLUSIONS AND FUTURE WORK 
A methodology for anomaly detection in dam behaviour based on BRTs was presented. It 

is based on a criterion for defining a range of normal behaviour, based in turn on the model 
prediction and the statistics of the training error.  

The occurrence of extraordinary loads is accounted for by computing a density function of 
the most relevant input variables (hydrostatic load and air temperature) via kernel density 
estimation. This reduces the amount of false positives due to lack of model accuracy for 
extrapolation. 

Causal and non-causal models were compared, as regards their capability for detecting 
anomalies in radial displacements of an arch dam. Artificial anomalies were generated by 
adding certain values to the dam response, as computed by means of a FE model. The non-
causal model showed better performance: fewer false positives, more anomalies detected and 



9 
 

lower detection time. This is due to its higher accuracy, which results in narrower intervals 
for normal behaviour. 

However, non-causal models rely on response variables to predict each output, i.e., the 
predictions for the radial displacement at a given location and time is based on other 
displacements, as well as on the previous values of the variable to predict. This may lead to 
poor performance when the dam undergoes abnormal behaviour affecting several devices. 
We are currently working on this issue, by means of applying the same methodology to more 
realistic abnormal data: the boundary conditions of the numerical model are modified to 
reproduce hypothetical, though feasible, anomalies, which are reflected in several output 
variables.   

In any case, these techniques should be used as a tool to provide detailed and accurate 
information to the dam safety managers, rather than as a totally automatic detection system. 
All relevant decisions influencing dam safety shall be made by an expert and capable 
engineer, based on the analysis of all the relevant information available. In this context, plots 
as that depicted in Figure 3 can be highly valuable: they allow visually identifying the 
occurrence of a deviation from normal behaviour (increasing along time in the example 
presented). Thus, the automatic system can be used as an indicator to generate a warning 
which leads to intensify the dam safety monitoring. 
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C.1. Introduction

C.1 Introduction

In this appendix, the code for the interactive tools is included. They all make use of the

Shiny library and are formed by three files:

• global.R includes general instructions

• server.R contains the calculations

• ui.R controls the user interface

All files should be placed in the same directory, together with a data folder where the

input data should be stored in an appropriate format to be read from global.R
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C.2 Dam Monitoring App

C.2.1 User interface

Upload tab

Figure C.1: Dam Monitoring App. Welcome tab. File upload.
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Data exploration

Figure C.2: Tab for data exploration. User interface for scatterplot.
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Figure C.3: Tab for data exploration. User interface for time series plot.
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Model fitting

Figure C.4: Tab for model fitting. User interface.
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Model interpretation

Figure C.5: Tab for model interpretation. User interface.
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C.2.2 Code

global.R

1 #### Load libraries --------------------------------

2
3 library(lubridate)

4 library(forecast)

5 library(gbm)

6 library(shinydashboard)

7 library(wordcloud)

8 library(’shiny’)

9 library(scales)

10 library(grid)

11 library(RColorBrewer)

12 library(’ggplot2 ’)

13 library(DT)

14 library(xts)

15 library(dygraphs)

16
17
18 #### Function for partial dependence plot

19
20 part.plot <- function (model , xvar , points){

21 pdp01 <- plot(model ,

22 i.var = match(xvar ,model$var.names),

23 n.trees = model$n.trees ,

24 continuous.resolution = points ,

25 return.grid = T)

26 gplot1 <- ggplot(data=pdp01 , aes(x=pdp01[,1], y=y))+

27 geom_point(shape=21, fill="#F8766D", size =4)+

28 geom_smooth(level =0.8, colour="black", span =1.5, linetype=’dashed ’)

29 gplot1 <- gplot1+fte_theme()+

30 theme(axis.title.x = element_text(size=20, vjust =3))+

31 labs(x = xvar , y= model$response.name)

32 return(gplot1)

33 }

34
35 #### Function for bar chart in dygraphs

36
37 dyBarChart <- function(dygraph) {

38 dyPlotter(dygraph = dygraph ,

39 name = "BarChart",

40 path = system.file("examples/plotters/barchart.js",

41 package = "dygraphs"))

42 }

43
44 #### Pre -loaded theme function for ggplot2 plots (adapted from http://minimaxir.com/)

---------------------------

45
46 fte_theme <- function () {

47
48 # Generate the colors for the chart procedurally with RColorBrewer

49
50 palette <- brewer.pal("Greys", n=9)

51 #color.background = palette [2]

52 color.background = ’white’

53 color.grid.major = palette [3]
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54 color.axis.text = palette [6]

55 color.axis.title = palette [7]

56 color.title = palette [9]

57
58 # Begin construction of chart

59
60 theme_bw(base_size =9) +

61
62 # Set the entire chart region to a light gray color

63 theme(panel.background=element_rect(fill=color.background , color=color.background)) +

64 theme(plot.background=element_rect(fill=color.background , color=color.background)) +

65 theme(panel.border=element_rect(color=color.background)) +

66
67 # Format the grid

68 theme(panel.grid.major=element_line(color=color.grid.major ,size =.25)) +

69 theme(panel.grid.minor=element_blank()) +

70 theme(axis.ticks=element_blank ()) +

71
72 # Format the legend , but hide by default

73 #theme(legend.position ="none") +

74 theme(legend.background = element_rect(fill=color.background)) +

75 theme(legend.text = element_text(size=16,color=color.axis.title)) +

76 theme(legend.title = element_text(size=16, color=color.axis.title))+

77
78 # Set title and axis labels , and format these and tick marks

79 theme(plot.title=element_text(color=color.title , size=10, vjust =1.25)) +

80 theme(axis.text.x=element_text(size=16,color=color.axis.text)) +

81 theme(axis.text.y=element_text(size=16,color=color.axis.text)) +

82 theme(axis.title.x=element_text(size=20, color=color.axis.title , vjust =0)) +

83 theme(axis.title.y=element_text(size=20, color=color.axis.title , vjust =1.25)) +

84
85
86 # Plot margins

87 theme(plot.margin = unit(c(0.35, 1, 0.3, 0.35) , "cm"))

88 }

ui.R

1 #### User interface for BRT Load. --------------------------------

2
3 dashboardPage(

4 dashboardHeader(title="Dam Monitoring App"),

5 dashboardSidebar(

6 width = 200,

7 sidebarMenu(

8 tags$head(

9 includeCSS(path = "www/style.css")

10 ),

11 menuItem(" Intro",

12 tabName = "introTab",

13 icon = icon("info")

14 ),

15 menuItem(" Exploration",

16 tabName = "exploration",

17 icon = icon("zoom -in", lib = "glyphicon","fa -0.5x")

18 ),

19 menuItem(" Model fitting",

20 tabName = "fit",

21 icon = icon("gear")
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22 ),

23 menuItem(" Interpretation",

24 tabName = "interpretation",

25 icon = icon("info -circle")

26 )

27 ) # end of sidebarMenu

28 ), # end of sidebar

29 dashboardBody(

30 tabItems(

31 tabItem(tabName="introTab", # tabItem 1. Intro

32 h1("Welcome to the Dam Monitoring App"),

33 fluidRow(

34 box(

35 title = "Please select",

36 width = 4, status = "primary", solidHeader = TRUE ,

37 radioButtons("radio", label = NULL ,

38 choices = list("Load monitoring data" = 1,

39 "Load a previously fitted model" = 2),

40 selected = character (0))

41 ), # close the box model source

42 conditionalPanel(

43 condition = "input.radio == 1",

44 box(

45 title = "Choose your data file",

46 width=4,

47 status="primary",

48 solidHeader = TRUE ,

49 fileInput(’file2 ’,

50 NULL ,

51 accept = ’.rds’)

52 ) # close the box

53 ),

54 conditionalPanel(

55 condition = "input.radio == 2",

56 box(

57 title = "Choose the file with the saved model",

58 width=4,

59 status="primary",

60 solidHeader = TRUE ,

61 fileInput(’file1 ’,

62 NULL ,

63 accept = ’.rds’)

64 ) # close the box

65 )

66 ), # end of fluidRow

67 fluidRow(

68 box(

69 title = "Load a plot of the monitoring system",

70 width = 4, status = "primary", solidHeader = TRUE ,

71 checkboxInput("frontView", "I have a plot of the monitoring devices",

value = FALSE),

72 fileInput(’file3 ’,

73 NULL ,

74 accept = ’.png’)

75 ) # close the box

76 ), # end of fluidRow

77 imageOutput("logos")

78 ), # end of tabItem 1. Intro

79 tabItem(tabName = "exploration", # tabItem 2. Exploration
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80 tags$style(type="text/css",

81 ".shiny -output -error { visibility: hidden; }",

82 ".shiny -output -error:before { visibility: hidden; }"),

83 fluidRow(

84 column(width = 2, # start column 1 - data

85 box(

86 title = "Choose your plot type",

87 width = NULL ,

88 solidHeader = TRUE ,

89 status = "primary",

90 radioButtons("radioPlot", label = NULL ,

91 choices = list("Time series" = 1, "Scatterplot" = 2),

92 selected = 1)

93 ),

94 conditionalPanel(

95 condition = "input.radioPlot == 1",

96 box(

97 title = "Variables to plot",

98 width = NULL ,

99 solidHeader = TRUE ,

100 status = "primary",

101 uiOutput("tsVars"),

102 uiOutput("tsVarsy2"),

103 checkboxInput("showgrid", label = "Show Grid", value = TRUE),

104 actionButton("refresh", "Draw/Refresh")

105 )

106 ),

107 conditionalPanel(

108 condition = "input.radioPlot == 2",

109 box(

110 title = "Variables to plot",

111 width = NULL ,

112 solidHeader = TRUE ,

113 status = "primary",

114 uiOutput("xVar"),

115 uiOutput("yVar"),

116 uiOutput("size"),

117 uiOutput("color"),

118 uiOutput("tableVars")

119 )

120 )

121 ),

122 column(width = 10, # start column 2 - plot

123 conditionalPanel(

124 condition = "input.radioPlot == 1",

125 box(

126 title = "Drag to zoom. Hover to highlight",

127 width = NULL ,

128 solidHeader = TRUE ,

129 status = "primary",

130 dygraphOutput("dy", height="300px")#,

131 ),

132 box(

133 textOutput("legendDivID"),

134 status = "info",

135 solidHeader = FALSE ,

136 title = "Legend", width=NULL

137 )

138 ),
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139 conditionalPanel(

140 condition = "input.radioPlot == 2",

141 box(

142 title = "Drag and double -click to zoom. Click to show info",

143 width = NULL ,

144 solidHeader = TRUE ,

145 status = "primary",

146 plotOutput("plotExp",

147 click = "plot_click",

148 dblclick = "plotExp_dblclick",

149 brush = brushOpts(

150 id = "plotExp_brush",

151 resetOnNew = TRUE

152 )

153 ),

154 DT:: dataTableOutput("plot_clicked_points")

155 )

156 )

157 ) # end of column

158 ), # end of first fluidRow

159 fluidRow(

160 conditionalPanel(

161 condition = "input.frontView == true",

162 column(width = 12, align="center", #offset=2,

163 box(

164 title = "Layout of the dam monitoring system", width = NULL , status= "

primary",

165 height = 370, #collapsible = TRUE , collapsed = TRUE ,

166 solidHeader = TRUE ,

167 imageOutput("FrontView1")

168 )

169 ) # end column

170 )

171 )

172 ), # end tabItem 2. Exploration

173 tabItem(tabName = "fit", # tabItem 3. Model fit

174 fluidRow( # open row

175 column(width = 3, # long column with parameters

176 conditionalPanel(

177 condition = "input.radio == 2",

178 box(

179 title = "Model info", width=NULL , status="primary",

180 htmlOutput("mytarget", container=tags$h3),

181 tags$hr(),

182 htmlOutput("input.title", container=tags$h3),

183 htmlOutput("myinputs", container=tags$h4),

184 tags$hr(),

185 htmlOutput("params.title", container=tags$h3),

186 htmlOutput("myparams", container=tags$h4),

187 htmlOutput("tr.title", container=tags$h3),

188 htmlOutput("loadTrY", container=tags$h4),

189 htmlOutput("te.title", container=tags$h3),

190 htmlOutput("loadTeY", container=tags$h4)

191 ) # close the box

192 ),

193 conditionalPanel(

194 condition = "input.radio == 1",

195 box(

196 title = "Choose Model Parameters",
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197 width = NULL ,

198 status = "primary",

199 solidHeader = TRUE ,

200 uiOutput("target"),

201 uiOutput("inputs"),

202 uiOutput("trainYears"),

203 uiOutput("testYears"),

204 numericInput(’shrinkage ’, ’shrinkage ’, min =0.0001 , max=0.9, value

=0.01, step =0.0001) ,

205 numericInput(’Int.depth ’, ’Int.depth ’, min=1, max=5, value=2, step

=2),

206 numericInput(’Bag.fraction ’, ’Bag.fraction ’, min=0.2, max=1, value

=0.5, step =0.1),

207 numericInput(’ntree ’, ’Number of trees’, min =1000 , max =10000 ,

value =1000, step =1000) ,

208 p(em("Documentation:",a("BRT Model Info",href="Documentation.html"

)))

209 ) # close the box

210 ), # end of the conditional panel

211 conditionalPanel( # conditional panel for buils button

212 condition = "input.radio == 1",

213 box(

214 title = NULL ,

215 width = NULL , status = "primary",

216 actionButton("build", "Build/Update")

217 )

218 ),

219 conditionalPanel(

220 condition = "input.radio == 1",

221 box( # box for save

222 title = "Save model",

223 width = NULL ,

224 status = "primary",

225 textInput("modelName",

226 label=NULL ,

227 value = "",

228 width = NULL ,

229 placeholder = "File name"),

230 actionButton(’save’, ’Save’)#,

231 ) # close the box for save

232 )

233 ), # end long column

234 column(width = 9, # column for results model fitting

235 fluidRow( # top row for info boxes

236 infoBoxOutput("MAE.Train",

237 width =3),

238 valueBoxOutput("R2.Train",

239 width =3),

240 valueBoxOutput("MAE.Test",

241 width =3),

242 valueBoxOutput("R2.Test",

243 width =3)

244 ), # end of top row

245 fluidRow( # bottom row for plots

246 box( # open box for plot model fit

247 title = "Model fitting",

248 width = NULL ,

249 status = "primary",

250 solidHeader = TRUE ,
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251 dygraphOutput("dyFit", height="300px"),

252 dygraphOutput("dyRes", height="300px")#,

253 ) # end of box for residuals

254 ) # end of bottom row

255 ) # end column

256 ) # end of row

257 ), # end of tabItem 3. Model fit

258 tabItem(tabName = "interpretation", # start tabItem 4. Interpretation

259 fluidRow(

260 column(width = 2,

261 box(

262 title = "Plot Controls", width = NULL , status = "primary",

263 solidHeader = TRUE ,

264 uiOutput("xvarsP1"),

265 numericInput("pointsP1", "Points in Plot 1", value=10,

266 min = 5, max = 20, step = NA,

267 width = NULL),

268 uiOutput("xvarsP2"),

269 numericInput("pointsP2", "Points in Plot 2", value=10,

270 min = 5, max = 20, step = NA,

271 width = NULL),

272 uiOutput("xvarsP3"),

273 numericInput("pointsP3", "Points in Plot 3", value=10,

274 min = 5, max = 20, step = NA,

275 width = NULL)#,

276 )

277 ), # end column

278 column(width = 10,

279 fluidRow( # top row for RI

280 box(

281 title = "Top 5 influential variables. Relative influence", width

= 6, status = "primary",

282 solidHeader = TRUE ,

283 plotOutput("varimp")

284 ),

285 box(

286 title = "Relative influence", width = 5, status = "primary",

287 solidHeader = TRUE ,

288 plotOutput("wordcloud")

289 )

290 ), # end of top row

291 fluidRow( # bottom row for info boxes

292 box(

293 title = "P1. Partial Dependence", width = 4, status = "primary",

294 solidHeader = TRUE , height = 370,

295 plotOutput("pdp1")

296 ),

297 box(

298 title = "P2. Partial Dependence", width = 4, status = "primary",

299 solidHeader = TRUE , height = 370,

300 plotOutput("pdp2")

301 ),

302 box(

303 title = "P3. Partial Dependence", width = 4, status = "primary",

304 solidHeader = TRUE , height = 370,

305 plotOutput("pdp3")

306 ) # end of box for model fit

307 ) # end of bottom row

308 ) # end column
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309 ) # end of row

310 ) # end of tabItem 4. Interpretation

311 ) # end of tabItems

312 ) # end of dashboard body

313 ) # end of dashboardpage
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server.R

1 # Allow larger files to upload.

2
3 options(shiny.maxRequestSize = 30*1024^2)

4
5 shinyServer(function(input , output , session) {

6
7 ## Operations for tabItem #1. Intro --------------------------------

8
9 # Plot CIMNE and UPM logos

10
11 output$logos <- renderImage ({

12 return(list(

13 src = "www/logos.png",

14 contentType = "image/png",

15 alt = "Logos",

16 width = 227, height = 94

17 ))

18 }, deleteFile = FALSE)

19
20 # Upload rds file and assign to global variables.

21
22 modelData <- reactive ({

23 if(input$radio ==2){

24 inFile <- input$file1 # file with model

25 if (is.null(inFile))

26 return(NULL)

27 loadModelRes <- readRDS(inFile$datapath)

28 }

29 loadModelRes

30 })

31
32 # Upload data file file (file2) and create ’dataset ’ data.frame.

33
34 filedata <- reactive ({

35 validate(

36 need(input$radio == 1, "Please load monitoring data")

37 )

38 inFile <- input$file2 # file with data

39 if (is.null(inFile))

40 return(NULL)

41 if (exists("dataset")) {rm(dataset)}

42 dataset <<- readRDS(inFile$datapath)

43 dataset

44 })

45
46 #### Operations for tabItem 2 Exploration --------------------------------

47
48 ## Input vars for plot --------------------------------

49
50 output$xVar <- renderUI ({

51 df <-filedata ()

52 if (is.null(df) || input$radio ==2 ) {

53 return(HTML(’Please load some data file’))

54 }

55 items=names(df)

56 names(items)=items

57 selectInput(’x’, ’X’, items , items [5])
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58 })

59 output$yVar <- renderUI ({

60 df <-filedata ()

61 if (is.null(df)) return(NULL)

62 items=names(df)

63 names(items)=items

64 selectInput(’y’, ’Y’, items , items [11])

65 })

66 output$size <- renderUI ({

67 df <-filedata ()

68 if (is.null(df)) return(NULL)

69 items=names(df)

70 names(items)=items

71 selectInput(’size’, ’Size’, names(items), names(items)[[6]])

72 })

73 output$color <- renderUI ({

74 df <-filedata ()

75 if (is.null(df)) return(NULL)

76 items=names(df)

77 names(items)=items

78 selectInput(’color’, ’Color’, names(items), names(items)[[4]])

79 })

80
81 # Vars to show in bottom table

82
83 output$tableVars <- renderUI ({

84 df <-filedata ()

85 if (is.null(df)) return(NULL)

86 items=names(df)

87 names(items)=items

88 selectizeInput(’tableVars ’, ’Columns shown’,

89 choices = items , multiple = TRUE ,

90 selected = items [1:5])

91 })

92
93 # Time series plot

94
95 output$tsVars <- renderUI ({

96 df <-filedata ()

97 if (is.null(df)) return(NULL)

98 items=names(df)

99 names(items)=items

100 selectizeInput(’tsVars ’, ’ Variable in left y-axis ’,

101 choices = items , multiple = TRUE ,

102 selected = names(items)[[3]])

103 })

104
105 output$tsVarsy2 <- renderUI ({

106 df <-filedata ()

107 if (is.null(df)) return(NULL)

108 items=c("None", names(df))

109 names(items)=items

110 selectizeInput(’tsVarsy2 ’, ’ Variable in right y-axis ’,

111 choices = items , multiple = FALSE ,

112 selected = items [1]

113 )

114 })

115
116 dyCols <- eventReactive(input$refresh , {
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117 inFile <- input$file2 # file with data

118 mydat <- readRDS(inFile$datapath)

119 selVars <- c(input$tsVars , input$tsVarsy2)

120 dycols <- which(names(mydat)%in%selVars)

121 dycols

122 })

123
124 dy2 <- eventReactive(input$refresh , {

125 dy2 <- input$tsVarsy2

126 dy2

127 })

128
129 output$dy <- renderDygraph ({

130 if (input$refresh == 0)

131 return ()

132 input$refresh

133 inFile <- input$file2 # file with data

134 mydat <- readRDS(inFile$datapath)

135 selVars <- c(input$tsVars , dy2())

136 dyDframe <- xts(mydat[,dyCols ()], order.by = mydat [,1])

137 isolate ({

138 if (identical(input$tsVarsy2 ,"None")){

139 dygraph(dyDframe , main = "")%>%

140 dyLegend(labelsDiv = "legendDivID", width = 1200, show = "onmouseover")%>%

141 dyOptions(drawGrid = input$showgrid , rightGap =20, colors = RColorBrewer :: brewer.

pal(9, "Set1"))%>%

142 dyAxis("y", label = input$tsVars [1], labelWidth =20)%>%

143 dyHighlight(highlightCircleSize = 5,

144 highlightSeriesBackgroundAlpha = 0.5,

145 hideOnMouseOut = FALSE ,

146 highlightSeriesOpts = list(strokeWidth = 3))%>%

147 dyRangeSelector ()

148 } else {

149 dygraph(dyDframe , main = "")%>%

150 dySeries(dy2(), axis = ’y2’)%>%

151 dyLegend(labelsDiv = "legendDivID", width = 400, show = "onmouseover")%>%

152 dyOptions(drawGrid = input$showgrid , rightGap =20,, colors = RColorBrewer :: brewer.

pal(9, "Set1"))%>%

153 dyAxis("y", label = input$tsVars [1], labelWidth =20)%>%

154 dyAxis("y2", label = dy2(), labelWidth =20, independentTicks = TRUE , drawGrid = FALSE

)%>%

155 dyHighlight(highlightCircleSize = 5,

156 highlightSeriesBackgroundAlpha = 0.5,

157 hideOnMouseOut = TRUE ,

158 highlightSeriesOpts = list(strokeWidth = 3))%>%

159 dyRangeSelector ()

160 }

161 })

162 })

163
164 # Plot Front view

165
166 output$FrontView1 <- renderImage ({

167 inFile <- input$file3 # file with image

168 if (is.null(inFile))

169 return(NULL)

170 if (input$frontView == FALSE)

171 return(NULL)

172 return(list(
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173 src = inFile$datapath ,

174 contentType = "image/png",

175 alt = "FrontView",

176 width = 993, height = 300

177 ))

178 }, deleteFile = FALSE)

179
180 ## Exploration Plot ------------------------------------------------

181
182 # Zoom brush

183
184 rangesExp <- reactiveValues(x = NULL , y = NULL)

185 observeEvent(input$plotExp_dblclick , {

186 brushExp <- input$plotExp_brush

187 if (!is.null(brushExp)) {

188 rangesExp$x <- c(brushExp$xmin , brushExp$xmax)

189 rangesExp$y <- c(brushExp$ymin , brushExp$ymax)

190 } else {

191 rangesExp$x <- NULL

192 rangesExp$y <- NULL

193 }

194 })

195
196 # Click Info on exploration plot -----------------------------------------

197
198 output$click_info <- renderText ({

199 if (is.null(input$plot_click$x))

200 return(NULL)

201 HTML(paste0(input$x, " = ", round(input$plot_click$x, digits =1),

202 "<br/>", input$y, " = ",

203 round(input$plot_click$y, digits =1),sep=’’))

204 })

205
206 # Show data for clicked point.

207
208 output$plot_clicked_points <- DT:: renderDataTable ({

209 mydat <- filedata ()

210 mydat <- cbind(Date=mydat[,1], round(mydat[,-1],digits =1))

211 selVars <- input$tableVars

212 myTableVars <- unique(c(input$tableVars , input$x, input$y))

213 mycols <- which(names(mydat)%in%myTableVars)

214 dat <- mydat[,mycols]

215 res <- nearPoints(dat , input$plot_click , xvar=input$x, yvar=input$y,

216 threshold = 10, maxpoints = 1,

217 addDist = FALSE)

218 datatable(res , options = list(

219 paging = FALSE ,

220 searching = FALSE ,

221 info=FALSE ,

222 ordering=FALSE

223 ),

224 rownames= FALSE

225 )

226 })

227
228 # Exploration Plot -----------------------------------------

229
230 output$plotExp <- renderPlot ({

231 if (is.null(input$file2)) return(NULL)
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232 validate(

233 need(input$radio == 1, "Please load monitoring data")

234 )

235 if(input$x != ’Date’ && !is.null(input$x)){

236 ggplot(filedata (), aes_string(x=input$x, y=input$y,

237 color = input$color)) +

238 geom_point() +

239 fte_theme()+

240 coord_cartesian(xlim = rangesExp$x, ylim = rangesExp$y)+

241 aes_string(color=input$color)+

242 aes_string(size=input$size)+

243 scale_colour_gradient(low="red")+

244 theme(legend.position="right")+

245 theme(legend.key.size = unit(1, "cm"))

246 } else {

247 ggplot(filedata (), aes_string(x=input$x, y=input$y)) + geom_point() +

248 fte_theme()+

249 coord_cartesian(xlim = rangesExp$x, ylim = rangesExp$y)+

250 aes_string(color=input$color)+

251 aes_string(size=input$size)+

252 scale_colour_gradient(low="red")+

253 scale_x_date()+

254 theme(legend.position="right")+

255 theme(legend.key.size = unit(1, "cm"))

256 }

257 })

258
259 ## Operations for tabItem 3. Model fit --------------------------------

260
261 # Options for ui

262
263 output$target <- renderUI ({

264 if (is.null(filedata ())) return(NULL)

265 items=names(filedata ())

266 names(items)=items

267 selectInput(’target ’, ’Target ’, items , items [8])

268 })

269 output$inputs <- renderUI ({

270 if (is.null(filedata ())) return(NULL)

271 items=names(filedata ())

272 selectizeInput(’Inputs ’, ’Inputs ’,

273 choices = items[-1], multiple = TRUE)

274 })

275 output$trainYears <- renderUI ({

276 if (is.null(filedata ())) return(NULL)

277 dateRangeInput("trainYears", label = h3("Training period"),

278 start= min(filedata ()$Date), end =max(filedata ()$Date) -1825,

279 min= min(filedata ()$Date), max =max(filedata ()$Date))

280 })

281 output$testYears <- renderUI ({

282 if (is.null(filedata ())) return(NULL)

283 dateRangeInput("testYears", label = h3("Test period"),

284 start= max(filedata ()$Date) -1824, end =max(filedata ()$Date),

285 min= min(filedata ()$Date), max =max(filedata ()$Date))

286 })

287
288 ## Model load/build tabItem --------------------------------------------------

289
290 # Main output: list with model , dataframe with (date , preds , obs , residual),

237



C. Code

291 # words , freqs , maes. -------------------------------------------

292
293 modelResFit <- eventReactive(input$build , {

294 traindata <- dataset[dataset$Date >=input$trainYears [1] & dataset$Date <=input$trainYears

[2],]

295 testdata <- dataset[dataset$Date >input$testYears [1] & dataset$Date <=input$testYears [2]

,]

296 for (i in 1: length(input$Inputs)){

297 if (i == 1){

298 nam = input$Inputs[i]

299 } else {

300 nam <- paste(nam , ’+’, input$Inputs[i])

301 }

302 }

303 myform <- as.formula(paste(input$target , "~", nam))

304 withProgress(message = ’Training model’, value = 0,{

305 brtModel <<- gbm(myform ,

306 data = traindata ,

307 distribution = "gaussian",

308 n.trees = input$ntree ,

309 shrinkage = input$shrinkage ,

310 interaction.depth = input$Int.depth ,

311 bag.fraction = input$Bag.fraction ,

312 train.fraction = 1,

313 n.minobsinnode = 5,

314 cv.folds = 0,

315 keep.data = TRUE ,

316 verbose=F)

317 })

318 # compute predictions , extract observations , add to dataframe

319 predTest <- predict(brtModel , newdata=testdata , n.trees=brtModel$n.trees)

320 predTrain <- predict(brtModel , newdata=traindata , n.trees=brtModel$n.trees)

321 Prediction=c(predTrain , predTest)

322 Observation <- c(traindata[,brtModel$response.name], testdata[,brtModel$response.name])

323 Error=c(Prediction -Observation)

324 Date <- c(traindata[,’Date’], testdata[,’Date’])

325 dataOut <<- data.frame(Date , Observation , Prediction , Error) # dataframe with date ,

preds , obs , residual

326 mae.train <<- round (( accuracy(Prediction [1: nrow(traindata)],

327 Observation [1: nrow(traindata)]) [3]),

328 digits =2)

329 mae.test <<- round (( accuracy(Prediction [(nrow(traindata)+1):nrow(dataOut)],

330 Observation [(nrow(traindata)+1):nrow(dataOut)])

[3]),

331 digits =2)

332 R2.train <- round(1 - sum(( traindata[,brtModel$response.name]-predTrain)^2)/sum((

traindata[,brtModel$response.name]-mean(traindata[,brtModel$response.name]))^2),

333 digits = 2)

334 R2.test <- round(1 - sum(( testdata[,brtModel$response.name]-predTest)^2)/sum(( testdata[,

brtModel$response.name]-mean(testdata[,brtModel$response.name]))^2),

335 digits = 2)

336 varImpB <-summary(brtModel , normalize=T)

337 words <<- row.names(varImpB)

338 freqs <<- varImpB [,2]/min(varImpB[varImpB [,2]!=0,2])+1

339 for (i in 1: nrow(varImpB)){ freqs[i] = max(varImpB[i,2], rep(1, nrow(varImpB))[i] )}

340 modelRes <- list(model = brtModel ,

341 dataout = dataOut ,

342 words = words ,

343 freqs = freqs ,
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344 mae.train = mae.train ,

345 R2.train = R2.train ,

346 mae.test = mae.test ,

347 R2.test = R2.test ,

348 trainY = input$trainYears ,

349 testY = input$testYears

350 )

351 maeTest <<- mae.test

352 trainYears <<- input$trainYears

353 testYears <<- input$testYears

354 modelResFit <- modelRes

355 modelResFit

356 })

357
358 # If loaded model: Target variable -------------------------------------

359
360 output$mytarget <- renderPrint ({

361 if(input$radio ==2){

362 inFile <- input$file1

363 if (is.null(inFile))

364 return(HTML(""))

365 HTML(paste("Target: ", modelData ()$model$response.name , sep=’’))

366 } else {return(HTML(""))}

367 })

368
369 # If loaded model: trainYears ---------------------------------------------------

370
371 output$tr.title <- renderPrint ({ HTML("Train period ")})

372 output$loadTrY <- renderPrint ({

373 if(input$radio ==2){

374 inFile <- input$file1

375 if (is.null(inFile))

376 return(HTML(""))

377 HTML(paste(as.Date(modelData ()$trainY [1]),"to",as.Date(modelData ()$trainY [2]), sep=’ ’)

)

378 } else {return(HTML(""))}

379 })

380 output$te.title <- renderPrint ({ HTML("Test period ")})

381 output$loadTeY <- renderPrint ({

382 if(input$radio ==2){

383 inFile <- input$file1

384 if (is.null(inFile))

385 return(HTML(""))

386 HTML(paste(as.Date(modelData ()$testY [1]),"to",as.Date(modelData ()$testY [2]), sep=’ ’))

387 } else {return(HTML(""))}

388 })

389
390 # If loaded model: Input variables -----------------------------------------------

391
392 output$params.title <- renderPrint ({ HTML("Model Parameters: ")})

393 output$myparams <- renderPrint ({

394 if(input$radio ==2){

395 inFile <- input$file1

396 if (is.null(inFile))

397 return(HTML(""))

398 params <- HTML(paste("n.trees:", modelData ()$model$n.trees ,’<br/>’,

399 "Shrinkage:", modelData ()$model$shrinkage ,’<br/>’,

400 "Bag fraction:", modelData ()$model$bag.fraction ,’<br/>’,

401 "Int. depth:", modelData ()$model$interaction.depth ,’<br/>’))
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402 params

403 } else {return(HTML(""))}

404 })

405
406 # If loaded model: Model parameters ---------------------------------------------------

407
408 output$input.title <- renderPrint ({ HTML("Inputs: ")})

409 output$myinputs <- renderPrint ({

410 if(input$radio ==2){

411 inFile <- input$file1

412 if (is.null(inFile))

413 return(HTML(""))

414 inputs <- modelData ()$model$var.names [1]

415 for (i in 2: length(modelData ()$model$var.names)){

416 inputs <- HTML(paste(inputs , modelData ()$model$var.names[i], sep = ’ - ’))

417 }

418 inputs

419 } else {return("")}

420 })

421
422 # Save the model ----------------

423
424 observeEvent(input$save , { # Only after fitting (input$radio == 1)

425 resList <- modelResFit ()

426 saveRDS (resList , file = paste(’data/models/’,input$modelName ,’.rds’, sep=’’))

427 })

428
429 # If build model: MAE Test -----------------

430
431 output$MAE.Test <- renderValueBox ({

432 pdf(NULL) # to fix error when running on AWS

433 if(input$radio ==1){

434 mae.test <- modelResFit ()$mae.test

435 } else {

436 mae.test <- modelData ()$mae.test

437 }

438 valueBox(

439 mae.test , "MAE Test", icon = icon("line -chart"),

440 color = "aqua"

441 )

442 })

443
444 output$R2.Test <- renderValueBox ({

445 pdf(NULL) # to fix error when running on AWS

446 if(input$radio ==1){

447 R2.test <- modelResFit ()$R2.test

448 } else {

449 R2.test <- modelData ()$R2.test

450 }

451 valueBox(

452 R2.test , "R2 Test", icon = icon("line -chart"),

453 color = "aqua"

454 )

455 })

456
457 # If build model: MAE Train -----------------

458
459 output$MAE.Train <- renderValueBox ({

460 pdf(NULL) # to fix error when running on AWS
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461 if(input$radio ==1){

462 mae.train <- modelResFit ()$mae.train

463 } else {

464 mae.train <- modelData ()$mae.train

465 }

466 valueBox(

467 mae.train , "MAE Train", icon = icon("line -chart"),

468 color = "purple"

469 )

470 })

471
472 output$R2.Train <- renderValueBox ({

473 pdf(NULL) # to fix error when running on AWS

474 if(input$radio ==1){

475 R2.train <- modelResFit ()$R2.train

476 } else {

477 R2.train <- modelData ()$R2.train

478 }

479 valueBox(

480 R2.train , "R2 Train", icon = icon("line -chart"),

481 color = "purple"

482 )

483 })

484
485 ## Fit plot

486
487 # Dygraphs

488
489 output$dyFit <- renderDygraph ({

490 pdf(NULL) # to fix error when running on AWS

491 if (input$radio == 1) {

492 dyData <- modelResFit ()$dataout

493 endTrain <- input$trainYears [2]

494 } else {

495 dyData <- modelData ()$dataout

496 endTrain <- modelData ()$trainY [2]

497 }

498 dyDframe <- xts(dyData [,2:3], order.by = dyData [,1])

499 dygraph(dyDframe , main = "", group = "fit")%>%

500 dySeries("Observation", label = "Observation", drawPoints = TRUE ,strokeWidth= 0.0,

pointSize= 3) %>%

501 dySeries("Prediction", label = "Prediction", strokePattern = "dashed", strokeWidth=

2.0) %>%

502 dyLegend(show = "always", width = 400)%>%

503 dyOptions(, colors = RColorBrewer :: brewer.pal(9, "Set1"))%>%

504 dyEvent(endTrain , "End of training", labelLoc = "bottom")%>%

505 dyHighlight(highlightCircleSize = 5,

506 highlightSeriesBackgroundAlpha = 0.9,

507 hideOnMouseOut = FALSE)%>%#,

508 dyRangeSelector ()

509 })

510 output$dyRes <- renderDygraph ({

511 pdf(NULL) # to fix error when running on AWS

512 if (input$radio == 1) {

513 dyData <- modelResFit ()$dataout

514 endTrain <- input$trainYears [2]

515 } else {

516 dyData <- modelData ()$dataout

517 endTrain <- modelData ()$trainY [2]
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518 }

519 names(dyData)[4] <- "Error"

520 dyDframe <- xts(dyData[,4], order.by = dyData [,1])

521 dyDframe <- data.frame(Error=dyDframe)

522 dygraph(dyDframe , main = "", group = "fit")%>%

523 dyLegend(show = "onmouseover")%>%

524 dyAxis("y", label = "Residual", labelWidth =20)%>%

525 dyEvent(endTrain , "End of training", labelLoc = "bottom")%>%

526 dyHighlight(highlightCircleSize = 5,

527 hideOnMouseOut = TRUE)%>%

528 dyBarChart ()

529 })

530
531 # Brush reactive zoom ----------------------------

532
533 ranges <- reactiveValues(x = NULL , y = NULL)

534 observeEvent(input$plot1_dblclick , {

535 brush <- input$plot1_brush

536 if (!is.null(brush)) {

537 ranges$x <- as.Date(c(brush$xmin , brush$xmax), origin=’1970 -01 -10’ )

538 ranges$y <- c(brush$ymin , brush$ymax)

539 } else {

540 ranges$x <- NULL

541 ranges$y <- NULL

542 }

543 })

544
545 # Plot1. Model fitting ----------------------------

546
547 output$plot1 <- renderPlot ({

548 if (input$radio == 1) {

549 ggData <- modelResFit ()$dataout

550 ggyLab <- modelResFit ()$model$response.name

551 } else {

552 ggData <- modelData ()$dataout

553 ggyLab <- modelData ()$model$response.name

554 }

555 p <- ggplot(ggData) +

556 geom_point(aes(Date , Observation , colour="Observation"),

557 shape=21, fill="#619 CFF", size =4) + # circles - observations

558 geom_line(aes(Date , Prediction , colour="Prediction"),

559 size =1.2, linetype=’dashed ’)+

560 scale_colour_manual(values = c("#619 CFF", "orangered2"),

561 guide = guide_legend(override.aes = list(

562 linetype = c("blank", "dashed"),

563 shape = c(21, NA))))+

564 coord_cartesian(xlim = ranges$x, ylim = ranges$y)

565 isolate ({

566 if(input$radio ==1){

567 xVertLine <- as.numeric(input$trainYears [2])

568 } else if (input$radio == 2) {

569 xVertLine <- as.numeric(modelData ()$trainY [2])

570 }

571 })

572 p +

573 fte_theme()+

574 theme(legend.position=c(0.9, 0.9))+

575 theme(legend.title=element_blank())+

576 theme(legend.key = element_rect(colour = NA, fill = NA))+
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577 theme(legend.key.size = unit (1.5, "cm"))+

578 geom_vline(xintercept = xVertLine ,

579 color=’red’, linetype =2)+

580 labs(x = "Date", y= ggyLab)

581 })

582
583 # Brush for bottom plot ----------------------------

584
585 rangesx <- reactiveValues(x = NULL)

586 observe ({

587 brush <- input$plot2_brush

588 if (!is.null(brush)) {

589 ranges$x <- as.Date(c(brush$xmin , brush$xmax), origin=’1970 -01 -10’ )

590 } else {

591 rangesx$x <- NULL

592 }

593 })

594
595 # Residuals plot ----------------------------

596
597 output$plot2 <- renderPlot ({

598 if (input$radio == 1) {

599 ggResData <- modelResFit ()$dataout

600 } else {

601 ggResData <- modelData ()$dataout

602 }

603 p <- ggplot(ggResData , aes(x=Date , y=Error)) +

604 geom_point(shape=21, fill="#F8766D", size =4)+coord_cartesian(xlim = ranges$x)

605 isolate ({

606 if(input$radio ==1){

607 xVertLine <- as.numeric(input$trainYears [2])

608 } else {

609 xVertLine <- as.numeric(modelData ()$trainY [2])

610 }

611 p + fte_theme()+geom_vline(xintercept = xVertLine ,

612 color=’red’, linetype =2)+

613 labs(x = "Date", y= "Residual")

614 })

615 }, height =200)

616
617 ## Operations for tabItem 4 Interpretation --------------------------------

618
619 # Vars for partial dep. plot #1 -----------------

620
621 output$xvarsP1 <- renderUI ({

622 if (input$radio == 1) {

623 modVars <- modelResFit ()$model$var.names

624 } else if (input$radio ==2){

625 modVars <- modelData ()$model$var.names

626 }

627 selectizeInput(

628 ’XvarsP1 ’, ’Var in Plot 1’, choices = modVars , multiple = F,

629 selected = NULL

630 )

631 })

632
633 # Vars for partial dep. plot #2 -----------------

634
635 output$xvarsP2 <- renderUI ({
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636 if (input$radio == 1) {

637 modVars <- modelResFit ()$model$var.names

638 } else if (input$radio ==2){

639 modVars <- modelData ()$model$var.names

640 }

641 selectizeInput(

642 ’XvarsP2 ’, ’Var in Plot 2’, choices = modVars , multiple = F,

643 selected = NULL

644 )

645 })

646
647 # Vars for partial dep. plot #3 -----------------

648
649 output$xvarsP3 <- renderUI ({

650 if (input$radio == 1) {

651 modVars <- modelResFit ()$model$var.names

652 } else if (input$radio ==2){

653 modVars <- modelData ()$model$var.names

654 }

655 selectizeInput(

656 ’XvarsP3 ’, ’Var in Plot 3’, choices = modVars , multiple = F,

657 selected = NULL

658 )

659 })

660
661 # Variable importance plot. Top 5 vars. #1 -----------------

662
663 output$varimp <- renderPlot ({

664 if (input$radio == 1) {

665 brtModel <- modelResFit ()$model

666 } else if (input$radio ==2){

667 brtModel <- modelData ()$model

668 }

669 varimp.data <- summary(brtModel , plotit=F, cBars=5, order=T)

670 varimp.data <- data.frame(var=rownames(varimp.data), rel.inf=varimp.data [,2])

671 vars2plot <- min(5, nrow(varimp.data)) # no more than 5 vars

672 vi.p <- ggplot(varimp.data [1: vars2plot ,], aes(x = var , y = rel.inf)) +

673 geom_bar(stat = "identity")+ coord_flip()

674 vi.p+fte_theme()+

675 theme(axis.title.x = element_text(size=20, vjust =3))+

676 labs(x = "Variable", y= "Rel. Influence")

677 })

678
679 # Partial Dependence Plot #1 -----------------

680
681 output$pdp1 <- renderPlot ({

682 if (input$radio == 1) {

683 brtModel <- modelResFit ()$model

684 } else if (input$radio ==2){

685 brtModel <- modelData ()$model

686 }

687 pdp01 <- part.plot(brtModel , input$XvarsP1 , input$pointsP1)

688 pdp01

689 }, height =300)

690
691 # Partial Dependence Plot #2 -----------------

692
693 output$pdp2 <- renderPlot ({

694 if (input$radio == 1) {
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695 brtModel <- modelResFit ()$model

696 } else if (input$radio ==2){

697 brtModel <- modelData ()$model

698 }

699 pdp02 <- part.plot(brtModel , input$XvarsP2 , input$pointsP2)

700 pdp02

701 }, height =300)

702
703 # Partial Dependence Plot #3 -----------------

704
705 output$pdp3 <- renderPlot ({

706 if (input$radio == 1) {

707 brtModel <- modelResFit ()$model

708 } else if (input$radio ==2){

709 brtModel <- modelData ()$model

710 }

711 pdp03 <- part.plot(brtModel , input$XvarsP3 , input$pointsP3)

712 pdp03

713 }, height =300)

714
715 # Wordcloud model -----------------

716
717 wordcloud_rep <- repeatable(wordcloud)

718 output$wordcloud <- renderPlot ({

719 if (input$radio == 1) {

720 words <- modelResFit ()$words

721 freqs <- modelResFit ()$freqs

722 } else if (input$radio ==2){

723 words <- modelData ()$words

724 freqs <- modelData ()$freqs

725 }

726 wordcloud_rep(words ,freqs ,

727 scale=c(6 ,0.8),

728 min.freq=1,

729 max.words=10,

730 random.order=F,

731 random.color=FALSE ,

732 rot.per=0,

733 colors=brewer.pal(8, "Dark2"),

734 ordered.colors=FALSE ,

735 use.r.layout=FALSE ,

736 fixed.asp=TRUE)

737 })

738 }) # end of shinyServer
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C.3 Anomaly Detection App

This application requires an image of the dam, also stored in the “data” folder.

C.3.1 User interface

Figure C.6: Anomaly detection application. User interface
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C.3.2 global.R

1 library(shinydashboard)

2 library(’shiny’)

3 library(’ggplot2 ’)

4 library(’grid’)

5 library(’png’)

6 library(’scales ’)

7 library(dygraphs)

8
9 img <- readPNG("data/frontView.png")

10 g <- rasterGrob(img , interpolate=TRUE)

11 mydf <- read.table("data/masteroutNoncVal2W.res")

12 mydf[,’date’] <- as.Date(mydf[,’date’])

13 myColors <- c("#00 FF00", "#FFFF00", "#FF0000")

14 names(myColors) <- c("green", "yellow", "red")

15 myShapes <- c(22 ,24 ,25)

16 names(myShapes) <- c("none", "upstream", "downstream")

17
18 ########### Initialise data frame for the colors and shapes

19 mydate <- as.Date("2000 -05 -14")

20 res <- which(mydf$date >mydate)

21 res <- mydf[(res[1] -1):res[1],] # current and last rows

22 res1 <- res [ ,9:16] # t and t-1

23 res2 <- t(res1)

24 state <- factor(x=rep(’green’, 8), levels =c(’green ’, ’yellow ’, ’red’))

25 deviation <- factor(x=rep(’none’, 8), levels =c(’none’, ’upstream ’, ’downstream ’))

26 pends <- data.frame(x=c(0.935 , 0.935 , 0.715, 0.715, 1.168, 1.168 , 0.47, 0.47),

27 y= c(0.385 , 0.324 , 0.385, 0.324, 0.44, 0.385 , 0.44, 0.385) ,

28 state = state , deviation = deviation)

29 res3 = data.frame(prev = res2[,1], curr = res2[,2], pends)

30 res3$state <- rep(’green ’, 8)

31 for(i in 1:nrow(res3)){

32 if (abs(res3[i,2]) >3) { # num.sd

33 res3$state[i] <- ’red’

34 }else if (abs(res3[i,2]) >2){ #num.sd

35 res3$state[i] <- ’yellow ’

36 } else

37 res3$state[i] <- ’green’

38 }

39 for (j in 1:nrow(res3)){

40 if (res3$state[j] != ’green ’) { # yellow or red

41 if (res3$curr[j] > 0){

42 res3$deviation [j] <- ’upstream ’

43 } else res3$deviation[j] <- ’downstream ’

44 }

45 }

46 res4 <- res3

47 ################ End of initialising -> res3 and res4

48
49 # Function for plots

50
51 plot_sh <- function(d.frame , tg , max.date){

52 tg.pr <- paste(tg , "_pr", sep="")

53 date.in <- max.date -180 # start date

54 date.end <- max.date +14 # final date

55 d.frame <- d.frame[(d.frame$date > date.in) ,] # data frame to plot

56 d.frame <- d.frame [(d.frame$date < date.end),]

57 d.frame[nrow(d.frame) ,] <- NA
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58 tg.col <- which(names(d.frame) == tg) # output to plot

59 tg.pr <- which(names(d.frame) == paste(tg, "_pr", sep=""))

60 tg.anom <- which(names(d.frame) == paste(tg , "_anom", sep=""))

61 tg.up <- which(names(d.frame) == paste(tg, "_up", sep=""))

62 tg.lw <- which(names(d.frame) == paste(tg, "_lw", sep=""))

63 names(d.frame)[tg.col] <- ’target ’

64 names(d.frame)[tg.pr] <- ’pred’

65 names(d.frame)[tg.anom] <- ’anom’

66 names(d.frame)[tg.up] <- ’upr’

67 names(d.frame)[tg.lw] <- ’lwr’

68 myd.frame <- d.frame[,c(tg.col , tg.pr, tg.up, tg.lw)]

69 anom.vals <- d.frame$anom

70 for (i in 1:( length(anom.vals) -1)){

71 if (abs(anom.vals[i]) >2) {

72 anom.vals[i] <- d.frame$target[i]

73 } else {

74 anom.vals[i] <- NA

75 }

76 }

77 myd.frame <- data.frame(myd.frame , anom = anom.vals)

78 yRange <- 10

79 yMax <- max(myd.frame$upr)+yRange

80 yMin <- min(myd.frame$lwr)-yRange

81 dygraph(myd.frame , main = "") %>%

82 dySeries("anom", label = NULL , drawPoints = TRUE , strokeWidth= 0.0, pointSize= 7) %>%

83 dySeries("target", label = "Observed", drawPoints = TRUE ,strokeWidth= 0.0, pointSize= 3)

%>%

84 dyAxis("y", label = tg , labelWidth =20)%>%

85 dySeries(c("lwr", "pred", "upr"), label = "Predicted", strokePattern = "dashed") %>%

86 dyOptions(axisLabelFontSize =16, rightGap =20, colors = RColorBrewer :: brewer.pal(9, "Set1")

)%>%

87 dyLegend(labelsDiv = "legendDivID")

88 }

89
90 # Function for plot with symbols on dam layout

91 semplot <- function(res3 , g, myCols) {

92 base <- ggplot(res3 , aes(x=x, y=y)) + xlim (0 ,1.733)+ylim (0 ,0.592)+

93 geom_blank()+

94 theme(axis.line=element_blank (),axis.text.x=element_blank (),

95 axis.text.y=element_blank(),axis.ticks=element_blank(),

96 axis.title.x=element_blank(),

97 axis.title.y=element_blank(),

98 panel.background=element_blank (),panel.border=element_blank(),panel.grid.major=

element_blank (),

99 panel.grid.minor=element_blank (),plot.background=element_blank ())

100
101 # Full panel annotation

102 pl <- base + annotation_custom(g,xmin = -0.05, xmax = Inf , ymin = -0.05, ymax = Inf)+

103 geom_point(aes(x=x, y=y, fill = state , shape=factor(deviation), show_legend = TRUE),

104 size=6 )+

105 scale_fill_manual(values = myCols , guide=FALSE)+

106 scale_shape_manual(name="Direction",values=myShapes)+

107 theme(legend.key = element_rect())

108 pl <- pl+coord_fixed(ratio = 1)+theme(legend.key.size = unit(1, "cm"))+

109 theme(legend.text = element_text(size = 20))+

110 theme(legend.title = element_text(size = 20))+

111 theme(legend.key = element_rect(colour = ’white ’, fill = ’white’))

112 pl

113 }
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C.3.3 ui.R

1 dashboardPage(

2 dashboardHeader(title="Dam Monitoring App"),

3 dashboardSidebar(

4 width = 300,

5 dateInput(’date’,

6 label = h3(’Date’),

7 value = as.Date("2000 -05 -15")

8 ),

9 selectInput(’tg’, label = h3("Select target in Plot 1"),

10 choices = list("P1DR1" = "P1DR1", "P1DR4" = "P1DR4", "P5DR1" = "P5DR1", "

P5DR3" = "P5DR3",

11 "P2IR1" = "P2IR1", "P2IR4" = "P2IR4", "P6IR1" = "P6IR1" , "

P6IR3" = "P6IR3"),

12 selected = "P1DR1"),

13 selectInput(’tg.2’, label = h3("Select target in Plot 2"),

14 choices = list("P1DR1" = "P1DR1", "P1DR4" = "P1DR4", "P5DR1" = "P5DR1", "

P5DR3" = "P5DR3",

15 "P2IR1" = "P2IR1", "P2IR4" = "P2IR4", "P6IR1" = "P6IR1" , "

P6IR3" = "P6IR3"),

16 selected = "P2IR1")

17 ),

18 dashboardBody(

19 fluidRow(

20 column (10, align="center", offset=2,

21 box( # open the box

22 title = "Dam layout",width = 10, status = "primary",

23 solidHeader = TRUE , height = 370,

24 plotOutput("plot3")

25 ) # close the box

26 )

27 ),

28 fluidRow(

29 box(

30 title = "Plot 1",width = 6, status = "primary",

31 solidHeader = TRUE ,

32 dygraphOutput("dygraph01", height="300px")

33 ), # close the box

34 box(

35 title = "Plot 2",width = 6, status = "primary",

36 solidHeader = TRUE , #height = 370,

37 dygraphOutput("dygraph02", height="300px")

38 ) # close the box

39 ),

40 fluidRow(

41 column (12, align="center", offset=4,

42 box(

43 textOutput("legendDivID"),

44 status = "primary",

45 solidHeader = TRUE ,

46 title = "Legend", width=4

47 )

48 )

49 )

50 )

51 )
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C.3.4 server.R

1 shinyServer(function(input , output) {

2 dataInput <- reactive ({

3
4 ########### Update data frame for the colors and shapes

5 mydate <- input$date

6 res2 <- which(mydf$date >mydate)

7 res2 <- mydf[(res2 [1] -1):res2 [1],] # current and last rows

8 res12 <- res2 [ ,9:16] # t and t-1

9 res22 <- t(res12)

10 res32= data.frame(prev = res22[,1], curr = res22[,2], pends)

11 res32$state <- rep(’red’, 8)

12 res32$deviation <- rep(’none’, 8)

13 for(i in 1:nrow(res32)){

14 if (abs(res32[i,2]) >3) { # num.sd

15 res32$state[i] <- ’red’

16 }else if (abs(res32[i,2]) >2){ # num.sd

17 res32$state[i] <- ’yellow ’

18 } else

19 res32$state[i] <- ’green’

20 }

21 for (j in 1:nrow(res32)){

22 if (res32$state[j] != ’green’) { # yellow or red

23 if (res32$curr[j] >0){

24 res32$deviation [j]<- ’upstream ’

25 } else res32$deviation[j] <- ’downstream ’

26 }

27 }

28 res32

29 })

30 ################ End of updating ->

31
32 output$plot3 <- renderPlot ({

33 date.curr <- input$date

34 semplot(dataInput (), g, myColors)

35 }, height = 300)

36 output$dygraph01 <- renderDygraph ({

37 tg <- input$tg

38 max.date <- input$date

39 plot_sh(mydf , tg, max.date)

40 })

41 output$dygraph02 <- renderDygraph ({

42 tg <- input$tg.2

43 max.date <- input$date

44 plot_sh(mydf , tg, max.date)

45 })

46 })
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