Se presenta un nuevo elemento finito de lámina delgada. Este nuevo elemento no usa rotaciones como grados de libertad. En su lugar, para sortear el requisito de mantener continuidad C1 entre elementos, el autor mejora la descripción geométrica de los triángulos planos de una malla de triángulos lineales, por medio de polinomios de Bernstein y particiones triangulares de Bernstein-Bézier.

Para definir las particiones de Bernstein-Bézier, el autor estima las normales a la superficie en los nodos de una malla de triángulos. Ubach, Estruch y García-Espinosa hicieron una comparación estadística exhaustiva entre distintos factores de ponderación. La conclusión de dicho trabajo conduce a usar como factor de ponderación: el inverso del área de la circunferencia circunscrita al triángulo y el ángulo interno del triángulo en el nodo considerado. Con este nuevo factor de ponderación, se reduce en aproximadamente un 10% el error medio cuadrático cometido en la estimación de las normales de superficies generadas aleatoriamente, respecto del mejor factor usado previamente en la literatura.

Con la información de los vectores normales en los nodos, el autor construye triángulos cúbicos de Bézier. Estos triángulos cúbicos de Bézier interpolan la superficie; con continuidad C1 en los nodos y C0 en las aristas. En virtud a este planteamiento, el nuevo elemento recibe el nombre de BEST.

El elemento BEST aprovecha todas las conectividades nodales de cada triángulo de la malla. El número de triángulos que rodean cada nodo de la malla no afecta al cálculo de los vectores normales. El elemento BEST es independiente de la topología de la malla.

Se propone un nuevo paradigma que consiste en reconstruir la geometría de un elemento triangular cúbico. Esta reconstrucción geométrica aprovecha las propiedades de las funciones cúbicas B-spline (triángulo cúbico de Bézier). Así, el autor crea un elemento de lámina conforme basado en el continuo.

Un triángulo cúbico de Bézier tiene 30 parámetros (3 coordenadas para cada uno de los 10 puntos de control). Es necesario aplicar 30 condiciones independientes. 15 de estas condiciones se deducen de la posición de los 3 vértices del triángulo y de los vectores normales en los 3 vértices. De las otras 15 condiciones, 8 se obtienen a partir de criterios de minimización de la energía. Estos criterios de minimización de la energía sirven para definir un elemento bien planteado. El autor desarrolla 3 problemas reducidos para los 3 modos de deformación de la lámina: deformación de flexión, de membrana (extensión en el plano) y de cortante en el plano (rotación de taladro).

Los únicos grados de libertad del elemento BEST son las posiciones de los vértices (9 variables). Los otros 21 parámetros se resuelven internamente. Para obtener estos 21 parámetros internos, hay que resolver 9 sistemas de ecuaciones lineales de rango 3 para cada elemento BEST.

Se ha aplicado el elemento BEST con éxito al cálculo de láminas delgadas en régimen lineal y geométricamente no-lineal con un método implícito. La no-linealidad se plantea con una formulación Lagrangiana total.

Se demuestra cómo pre-integrar en el espesor de manera eficiente y precisa. Solo es preciso evaluar las integrales en el espesor una vez: en la configuración de referencia. Solo hay 14 integrales escalares en el espesor para cada punto de Gauss.

Los ejemplos numéricos muestran que el elemento BEST tiene potencial para converger cúbicamente. Pero también existen dudas sobre la capacidad de reproducir de manera consistente este resultado en un amplio rango de problemas. En problemas dominados por la deformación de cortante en el plano, la formulación utilizada en esta tesis solo alcanza convergencia lineal. En ejemplos orientados a la deformación de membrana que incluyen curvatura, la convergencia es cuadrática.El elemento BEST sufre de bloqueo por membrana.