Aquesta tesi tracta la simulació a gran escala d'equacions en derivades parcials sobre geometries variables. L'aplicació principal és la simulació de procesos de fabricació additiva (o impressió 3D) amb metalls i per mètodes de fusió de llit de pols, com ara Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS) o Electron-Beam Melting (EBM). La simulació d'aquests processos és un repte computacional excepcional, perquè els processos estan caracteritzats per múltiples escales espaitemporals i múltiples físiques que tenen lloc sobre geometries tridimensionals complicades que creixen en el temps. La sinèrgia entre algorismes numèrics avançats i eines de computació científica d'alt rendiment és la única via per resoldre completament i a curt termini les necessitats en simulació d'aquesta àrea.El principal objectiu d'aquesta tesi és dissenyar un nou marc numèric escalable de simulació amb capacitat de multiresolució en geometries complexes i variables. El nou marc es construeix unint tres eines computacionals: (1) mallat paral·lel i adaptatiu amb malles de boscs d'arbre, (2) mètodes d'elements finits immersos robustos i (3) modelització en paral·lel amb elements finits de geometries que creixen en el temps. Algunes limitacions i problemes oberts en l'estat de l'art, que són claus per aconseguir el nostre objectiu, guien la nostra recerca. Tots els desenvolupaments s'implementen en arquitectures de memòria distribuïda amb el programari d'accés obert FEMPAR. Quant al problema d'aplicació, (4) s'investiguen models reduïts en espai i temps per models tèrmics del procés. Aquests models reduïts s'acoplen al nostre marc computacional per simplificar l'optimització del procés.Les contribucions d'aquesta tesi abasten els quatre punts de dalt. L'estat de l'art de (1) es millora substancialment amb proves riguroses dels beneficis computacionals del 2:1 balancejat (fàcil paral·lelització i alta escalabilitat), així com dels requisits mínims que aquest tipus de mallat han de complir per garantir que els espais d'elements finits que s'hi defineixin estiguin ben posats. Quant a (2), s'ha formulat un mètode robust, òptim i escalable per agregació per problemes el·líptics amb contorn o interface immerses. Després d'augmentar (1)+(2) amb un nova estratègia paral·lela per (3), el marc de simulació resultant mitiga de manera efectiva el principal coll d'ampolla en la simulació de processos de fabricació additiva en llits de pols de metall: adaptivitat i remallat escalable en geometries complexes que creixen en el temps. Durant el desenvolupament de la tesi, es col·labora amb el Monash Centre for Additive Manufacturing i la Universitat de Monash de Melbourne, Austràlia, per investigar el problema d'aplicació. En primer lloc, es fa una anàlisi experimental i numèrica exhaustiva dels mètodes d'aggregació temporal. En segon lloc, es proposa i valida experimental una nova formulació de contacte tèrmic que té en compte la inèrcia tèrmica i és adequat per a localitzar el model, l'anomenada aproximació per dominis virtuals.Mitjançant l'ús eficient de recursos computacionals d'alt rendiment, el nostre nou marc computacional fa possible l'anàlisi d'elements finits a gran escala dels processos de fabricació additiva amb metalls, amb augment de la fidelitat de les prediccions i reduccions significatives de temps de computació. Així mateix, es pot combinar amb els models reduïts que es proposen per l'optimització tèrmica del procés de fabricació. Aquestes eines contribueixen a accelerar la comprensió del lligam procés-rendiment i la digitalització del disseny i certificació de productes en fabricació additiva per metalls, dues fites crucials per explotar la tecnologia en producció en massa.


Thesis URL