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Recent experimental findings report the ability of biological tissues to undergo softening, stiff-

ening and fluidisation. It is becoming increasingly clear that the processes at sub-cellular scale

must be taken into consideration to explain these behaviours. At sub-cellular level, the cytoskele-

tal network is a dynamic mechanical structure which plays a major role in regulating important

phenomena including contractility, motility, cell division and mechanotransduction. Therefore,

modelling cytoskeletal kinetics at an appropriate length scale encompassing (de-)polymerization,

crosslinker dynamics, active force generation is of the utmost importance.

Recently, a computationally efficient micro-mechanical finite element model has been developed

[1] which can simulate phenomena well over 1000 s. This state-of-the-art model encompasses

stochastic thermal undulations of cytoplasm and dynamic cross-linking. The smallest length scale

in this model is a semi-flexible polymer similar to filamentous actin (F-actin). Since the slender-

ness ratio of F-actin is very high (10 – 1000), these filaments can be discretised using geometrically

exact beam elements. Previous works were developed by discretising the filaments using geomet-

rically exact Reissner type of beam elements.

Current developments of the model are focused on implementing a novel geometrically exact
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Figure 1: Results of bio-polymer network simulation

Kirchhoff beam element [2] to discretise the filaments. This Kirchhoff beam element yields lower

discritisation error compared to Reissner beam element and alleviates ill-conditioning by eliminat-

ing shear-stiffness terms. Preliminary simulations using Kirchhoff beam elements show promising

results at single filament scale and at network level. At single filament scale, the numerical re-

sults are in very good agreement with theoretical predictions of orientation correlation function

along the length of a filament (Figure 1a). At network scale, we are able to observe the forma-

tion of a bundle network architecture (Figure 1b) in a representative volume element as reported

in experimental findings [3]. Future development of this model is directed towards reproduction

of phenomena observed in cytoskeletal networks. The interaction of networks with cellular mem-

branes is of particular interest.
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