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Today’s topics:
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* Mixed u-¢ method: towards
applications in fluid mechanics

* Exploring two different approaches
to local enrichment targeted to
embedding objects into a “fluid
domain™- laplacian model problem
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Mixed u-£ method: towards
applications in fluid mechanics
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MULTHPHYSICS

A Mixed u-£ method

Standard irreducible form of
equilibrium:
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V.-o+b=piin ()
Mixed u-¢ form (see works of Cervera

et al.):

V- (Cle.o):e)+ b= piiin ()
—e+e(u) =0 inQ
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Explicit form
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M .. n+% _ﬂﬂ-— 3
compute the acceleration i, = ~

=,

/7'4

evaluate on every element the discontinuous strain e(u).

. . L™ —]. b
evaluate the strain e, = P(e(u))) ,that is, e, = M Gu.
compute internal forces taking into account the stabilized strain.

compute the mid-step velocity by solving

W, 1 = [2M + AtD] 7Y (2M — AtD)a,_y + 2At(£258 — Firt(u,,, esteb))]

compute end-of-step displacements as u,, ;1 = u,, + Attt 1
2
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Advantages of u-¢

More accurate than irreducible for a
given mesh (at the price of having
more unknowns)

Results are more “mesh independent
Ensures convergence of nodal strains

LARGER STABLE TIME STEP FOR
EXPLICIT PROBLEMS on a given
mesh.

Suitable for large-scale
parallelization

n
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One example of application

BN

Stress distribution at left side:
Irreducible vs mixed vs reference
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Application to diffusion problem

Velocity Norm (Classical Formulation) Velocity Norm (Mixed Formulation)

2 T = T T T - o T 0.35
7 Al

R S— Mixed FEM
18} PN J = ""’i.f: p N : Classical FEM

Velocity norm
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approaches to local enrichment
(taking diffusion as model problem)
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*Transient heat transfer by conduction l%é
oT . r[
pep === V.(kVT) = 0 in 01X (0.t) %
*Boundary conditions i e
T=T. onl B
T=T, on l;

int int

kVT.n = Qint ON Fint

Bilinear form acting on a test function w

a(g—j,w) +b(T, w)|=|l(w)

/ o

(PCP@T w) (kVT,Vw) —(qy,w)
at -’

* Infinite element the temperature is approached

discretized form >
PRAGIAG
i=1

T (x,t) =
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‘METHOD | (ENRICHMENT)

Th(x) = z N, COT; + NOT + N(x)T
\ ] | J

iel

\kiﬁky jump

Local special functions to
capture discontinuities in the

solution

C" continuity is violated across
each of the edges intersected by
the interface , in the work we show
heuristically how the method
appears to work satisfactorily in
real cases despite this defect

Inte

Thereisno
continuityin
function

int

VARVERV

AN A\ /\

Function is discontinuous as € “and(or) C*




*To define weak equation we decompose the discrete problem by using
test functions from linear, kink and jump discontinuous respectively

W=w'+w+w i=13
T=T' +T+T =13
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Ty E . (T . - (T . L o o
() (o) (o) s s s -

i,j=1,3

. [(dT! oT oT o N R
a, (Wﬁ’) + Qg (5’ ﬁr) + Qg (a,w) +b] (T, W) + by (T, W) + by (T, W) = 1(W)
j=1,3
- oT o N R
s (W’ ﬁ?’) t Ak (a_’ ﬁi’) t Qnm (—tﬁ?) + b (T, W) 4 by (T, W) + by (T, W) = 1(W)
j=1,3

‘Where the sub-index s refers to standard temperature degrees o
freedom and sub-indexes k and m refers to the additional degrees
freedom associate with kink and jump discontinuities reSJJectiver
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Once discretized we get
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(3x3) (3x2) 7 = (5x1) ~ 4(5x1)
ASS sk Asm T F
/ 233 A A (2x2) o ) )
A kk ikm T P
ks
A‘;{?lg ﬂmk Amm T” | F

Using the fact that the enrichment functions are local to each element, we
eliminate T™ and T" at the elementary level before final assembly as follows

Age A [Aks

([ASS] A A [Amk B Are Aen ] [N]

F
n _
)T - F + [ASR Asm] [Amk Amm F

Ims
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METHOD Il (Change FE space)

*The method with the ability to capture discontinuous within the
element not by

eenrichment functions but by local modification in nodal shape
function of the elements )

¥ I<RATOS

N1

Shape functions introduced by Buscaglia and others
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IMPOSING BOUNDARY
CONDITIONS ON DISCONTINUOUS

Neumann type boundary condition:

straightforward since it only needs to integrate the imposed flux
over the cut surface. In particular for the application of an
adiabatic boundary condition (zero heat flux) the terms including
the flux need to be zero:

MULTHPHYSICS
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Dirichlet type boundary condition
‘Method | = (Local) Lagrange Multiplier
Method Il = (Local) Penalty method
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IMPOSING DIRICHLET BOUNDARY
CONDITIONS (METHOD I)

*To impose for instance a value say zero for the temperature on
interface, Lagrange Multiplier method has been considered. we
propose to add two following conditions to the weak form

W, T+ *(V,T)+c,*(V,T)=0, j=13
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W)+ (V,T)+c, (0,T)=0, j=13

Additional conditions to
enforce the Dirichlet constraint

f for X€ ‘Fr'nt

Where: < ¢+ OF,7) = j F+OD ar,,

3
N ()T +Nx)'T+Nx)T=0
=0

NT +Nx) T+Nx)T=0

o




i
*Hence the system formed by the enrichment variables and by the lagrang g%
multipler can be writing as below I%é
1(3x3) Bxa) ] ¢ A7xD) _ _(7x1) 1
AL e | e . K
_ g
Aﬁig J(4x3) A Ay Cf{ C}:-i}iﬂ} | _ P ij=13
Al Ak A o Coy T" F
c! Ci Ch 0 0 At 0
c/ lc; C, o olJ | Lz L0 -

*One of the features of this method is that the system formed by the
enrichment variables and by the lagrange multipler can be statically
condensed prior to assembly.
*Note that it is not possible in general to condense out the
lagrange multipliers. It can be done in our case since matrix
block that corresponds to the enrichment is invertible
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IMPOSING DIRICHLET BOUNDARY
CONDITIONS (METHOD II)

No local unknowns - Penalty method is employed (making the
approach not attractive for real problems)

Here local Lagrange Multiplier can NOT be used since there are
no local enrichments. Use of lagrange multipliers would hence
imply modifying the global system
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EXAMPLES

* Thermal conductivity K = 1.0 (for the entire domain)

 Both the temperature and its gradient are enforced to be zero
separately

» Results obtain from our proposed methods are compared with
results of classic finite element method where the internal interface
Is matched by the mesh

MULTHHYSICS
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*Classic Finite Element
Method

METHQOD |

*Method |
(enrichment)

Temperature

22

18

16

14

12

10

Method 11

3 4

Direction of Section

*showing contour

lines of the
temperature  where
the Neumann

boundary condition
Is imposed
(VT.n=0)
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*showing contour

MULTHPHYSICS

lines of the
¥ % \ temperature  where
the Neumann

boundary condition
Is imposed
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T B B /3¢ EEE— *showing contour ling
of the temperature whe
the Neumann bounda
condition is imposed
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—————— | e ——— *showing contour lines ¢
= | — ' = the temperature where t
value of the temperature

imposed to zero

MULTHPHYSICS

IRATOS

o(T =

0) O

- )
«Classic Finite Element *Method | «Method 11 3 i) 3

Method

N
(1)

—Conforming Mesh (FEM)
—Mesh Size: 0.22
Method | Mesh Size: 0.11
| —Mesh Size: 0.055

Temperature

METHQOD |

Direction of section

IMNE*



————— | —————— *showing contour lines ¢
= = e s the temperature where t
value of the temperature

imposed to zero
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—————— | , S —— *showing contour lines ¢
| | — ' | the temperature where t
value of the temperature

imposed to zero
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ANIMATIONS

Results in animate form where the Dirichlet
boundary condition Is imposed

aaaaa
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*Method | Method I
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Test with exact solution

* Thermal conductivity K = 1.0 (for the entire domain)
» The temperature is enforced to be zero at the interface
 Results obtain from our proposed methods are compared with Exact Solution
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*Arbitrary shape

MULTHHYSICS

*Thermal conductivity K = 1.0 (for the entire domain)

*Both the temperature and its gradient are enforced to be zero separately

*Results obtain from our proposed methods are compared with results of classic finite
element method where the internal interface is matched by the mesh
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«Classic Finite Element Method
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«Classic Finite Element Method *Method | «Method 11
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Same method can also be applied
to CFD

“Industrial” examples at
the presentation of Dr.
Antonia Larese — MS042A

On Wednesday 14-16
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Conclusions
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A mixed u-e formulation is being
Investigated for CFD applications

B
-

Two possible approaches are
Investigated to include an object into
the solution of a “cfd” problem

Our hope is to combine all in one...
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