Este trabajo de investigación tiene como objetivo principal, desarrollar, implementar y validar una técnica de transferencia de información, en los métodos de descomposición de dominios, capaz de abordar problemas termomecánicos acoplados con formulaciones mixtas desplazamiento-presión. En las técnicas de partición de dominios, una vez dividido un dominio en un número finito de subdominios, la discretización de cada uno de los componentes internos o subdominios, se lleva a cabo mediante técnicas conocidas, en este caso, mediante la técnica de los Elementos Finitos, con lo cual, el problema se centra en la correcta transferencia de información a través de la interfaz de contacto entre las particiones. En la mayoría de los métodos alternativos de descomposición de dominios, la interfaz entre subdominios se genera mediante la creación de un marco de partición. En este trabajo por el contrario, se propone la generación de una malla de interfaz, de espesor nulo entre fronteras, por degeneración de una triangulación de Delaunay. Esta forma tan sencilla de generar la interfaz le confiere al método, además de precisión y robustez, versatilidad, ya que las mallas de los subdominios pueden ser arbitrariamente no coincidentes en sus fronteras, con lo cual, no se está supeditado a utilizar la misma discretización en cada una de las particiones, ni el mismo tipo de elementos en cada subdominio. Al particionar un dominio en subdominios, se pueden generar los denominados subdominios flotantes, que son aquellos que carecen de las condiciones de contorno suficientes para eliminar los movimientos de sólido rígido. Para poder llevar a cabo simulaciones numéricas con la presencia de subdominios flotantes, en este trabajo se propone una técnica innovadora, de bajo coste computacional y mínimamente invasiva a nivel de implementación, que permite calcular de forma robusta la pseudoinversa del subdominio flotante. Se demuestra, que la técnica propuesta, a diferencia de algunos métodos alternativos, pasa el ¿patch test¿ de forma satisfactoria, aun y cuando existen subdominios flotantes y mallas no coincidentes. Adicionalmente, se ha demostrado a partir de análisis de convergencia y medidas del error, que los resultados obtenidos mediante el método propuesto, son comparables, a nivel de precisión y velocidad de convergencia, con métodos alternativos que incorporan un marco de partición entre subdominios y que incluso, puede presentar ventajas notables a nivel de precisión, al ser comparada con el método de mortero de malla burda. Tomando en cuenta que la conexión entre subdominios se lleva a cabo mediante la incorporación de multiplicadores de Lagrange sobre la interfaz, para llevar a cabo simulaciones mixtas desplazamiento-presión, se ha incorporado el multiplicador de Lagrange de las presiones y sus respectivas ecuaciones de trabajo y restricciones sobre la interfaz. Mediante un test de validación, estudios de convergencia y medidas del error, se ha demostrado que la incorporación de este parámetro es fundamental a nivel de precisión, para llevar a cabo una correcta transferencia de la variable presión a través de la interfaz. De la misma manera, para poder abordar simulaciones numéricas de problemas termomecánicos acoplados, se ha incorporado el multiplicador de Lagrange de la temperatura y sus respectivas ecuaciones de trabajo y restricciones sobre la interfaz, demostrándose, mediante un test de validación, que incluso en problemas de conformado de metales en donde el material sufre altos niveles de deformación plástica, la técnica propuesta de partición de dominios consigue obtener resultados comparables en robustez y precisión con simulaciones numéricas monolíticas. Con el fin de utilizar el método propuesto en el contexto del cálculo en paralelo, se ha implementado la técnica, tal que, cada subdominio pueda ser procesado independientemente.Es por esta razón que se ha utilizado el método de las subestructuras para el cálculo de las variables.


Thesis URL